Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Khổng Tử
Xem chi tiết
nguyen thi vang
4 tháng 1 2021 lúc 22:12

\(\left\{{}\begin{matrix}x^2+2y^2=3\\x+y=m+1\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}\left[\left(m+1\right)-y\right]^2+2y^2=3\\x=\left(m+1\right)-y\end{matrix}\right.\)  <=>\(\left\{{}\begin{matrix}\left(m+1\right)^2-2\left(m+1\right)y+y^2+2y^2=3\left(1\right)\\x=\left(m+1\right)-y\end{matrix}\right.\)

Hệ PT có nghiệm duy nhất <=> (1) có nghiệm duy nhất <=>\(\Delta'=0\) 

<=> \(\left(m+1\right)^2-3\left[\left(m+1\right)^2-3\right]=0\)

<=> \(9-2\left(m+1\right)^2=0\)

<=> \(\left(m+1\right)^2=\dfrac{9}{2}\)

<=> \(\left[{}\begin{matrix}m+1=\dfrac{3\sqrt{2}}{2}\\m+1=-\dfrac{3\sqrt{2}}{2}\end{matrix}\right.\) <=> \(\left[{}\begin{matrix}m=\dfrac{3\sqrt{2}-2}{2}\\m=\dfrac{-3\sqrt{2}-2}{2}\end{matrix}\right.\)

 

你混過 vulnerable 他 難...
Xem chi tiết
Akai Haruma
4 tháng 1 2021 lúc 18:22

Bài 2. 

ĐK: $x\geq \frac{-11}{2}$

$x+\sqrt{2x+11}=0\Leftrightarrow x=-\sqrt{2x+11}$

\(\Rightarrow \left\{\begin{matrix} x\leq 0\\ x^2=2x+11\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\leq 0\\ x^2-2x-11=0(*)\end{matrix}\right.\)

\(\Delta'(*)=12\)

\(\Rightarrow x=1\pm \sqrt{12}=1\pm 2\sqrt{3}\). Với điều kiện của $x$ suy ra $x=1-2\sqrt{3}$

$\Rightarrow a=1; b=-2\Rightarrow ab=-2$

 

Akai Haruma
4 tháng 1 2021 lúc 18:19

Bài 1. 

Đặt $x^2+2x=t$ thì PT ban đầu trở thành:

$t^2-t-m=0(1)$

Để PT ban đầu có 4 nghiệm phân biệt thì:

Trước tiên PT(1) cần có 2 nghiệm phân biệt. Điều này xảy ra khi $\Delta (1)=1+4m>0\Leftrightarrow m> \frac{-1}{4}(*)$

Với mỗi nghiệm $t$ tìm được, thì PT $x^2+2x-t=0(2)$ cần có 2 nghiệm $x$ phân biệt. 

Điều này xảy ra khi $\Delta '(2)=1+t>0\Leftrightarrow t>-1$

Vậy ta cần tìm điều kiện của $m$ để (1) có hai nghiệm $t$ phân biệt đều lớn hơn $-1$

Điều này xảy ra khi \(\left\{\begin{matrix} (t_1+1)(t_2+1)>0\\ t_1+t_2+2>0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} t_1t_2+t_1+t_2+1>0\\ t_1+t_2+2>0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} -m+1+1>0\\ 1+2>0\end{matrix}\right.\Leftrightarrow m< 2(**)\)

Từ $(*); (**)\Rightarrow \frac{-1}{4}< m< 2$

b) 

Để pt ban đầu vô nghiệm thì PT(1) vô nghiệm hoặc có 2 nghiệm $t$ đều nhỏ hơn $-1$

PT(1) vô nghiệm khi mà $\Delta (1)=4m+1<0\Leftrightarrow m< \frac{-1}{4}$

Nếu PT(1) có nghiệm thì $t_1+t_2=1>-2$ nên 2 nghiệm $t$ không thể cùng nhỏ hơn $-1$

Vậy PT ban đầu vô nghiệm thì $m< \frac{-1}{4}$

c) Để PT ban đầu có nghiệm duy nhất thì:

\(\left\{\begin{matrix} \Delta (1)=1+4m=0\\ \Delta' (2)=1+t=0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} m=-\frac{1}{4}\\ t=-1\end{matrix}\right.\).Mà với $m=-\frac{1}{4}$ thì $t=\frac{1}{2}$ nên hệ trên vô lý. Tức là không tồn tại $m$ để PT ban đầu có nghiệm duy nhất. 

d) 

Ngược lại phần b, $m\geq \frac{-1}{4}$

e) 

Để PT ban đầu có nghiệm kép thì PT $(2)$ có nghiệm kép. Điều này xảy ra khi $\Delta' (2)=1+t=0\Leftrightarrow t=-1$

$t=-1\Leftrightarrow m=(-1)^2-(-1)=2$

 

 

Phuong Tran
Xem chi tiết
Nguyễn Quang Định
23 tháng 7 2018 lúc 17:35
Nguyễn cẩm Tú
Xem chi tiết
Mysterious Person
22 tháng 7 2018 lúc 16:01

a) ta có : \(\overrightarrow{AB}+\overrightarrow{DC}=\overrightarrow{AM}+\overrightarrow{MN}+\overrightarrow{NB}+\overrightarrow{DM}+\overrightarrow{MN}+\overrightarrow{NC}\)

\(=2\overrightarrow{MN}+\left(\overrightarrow{AM}+\overrightarrow{DM}\right)+\left(\overrightarrow{NB}+\overrightarrow{NC}\right)=2\overrightarrow{MN}\left(đpcm\right)\)

b) ta có : \(\overrightarrow{AB}+\overrightarrow{CD}=\overrightarrow{AI}+\overrightarrow{IJ}+\overrightarrow{JB}+\overrightarrow{CI}+\overrightarrow{IJ}+\overrightarrow{JD}\)

\(=2\overrightarrow{IJ}+\left(\overrightarrow{AI}+\overrightarrow{CI}\right)+\left(\overrightarrow{JB}+\overrightarrow{JD}\right)=2\overrightarrow{IJ}\left(đpcm\right)\)

bn dùng định lí ta lét chứng minh được \(\overrightarrow{MJ}=\overrightarrow{IN}=\dfrac{1}{2}\overrightarrow{AB}\)

C) ta có : \(\overrightarrow{MN}+\overrightarrow{IJ}=\overrightarrow{MA}+\overrightarrow{AB}+\overrightarrow{BN}+\overrightarrow{IA}+\overrightarrow{AB}+\overrightarrow{BJ}\)

\(=2\overrightarrow{AB}+\left(\overrightarrow{MA}+\overrightarrow{BJ}\right)+\left(\overrightarrow{BN}+\overrightarrow{IA}\right)\)

\(=2\overrightarrow{AB}+\left(\overrightarrow{DM}+\overrightarrow{JD}\right)+\left(\overrightarrow{NC}+\overrightarrow{CI}\right)=2\overrightarrow{AB}+\overrightarrow{JM}+\overrightarrow{NI}\) \(=2\overrightarrow{AB}+\overrightarrow{BA}=\overrightarrow{AB}\left(đpcm\right)\)

d) ta có : \(\overrightarrow{IM}+\overrightarrow{IN}=\overrightarrow{IJ}+\overrightarrow{JM}+\overrightarrow{IN}=\overrightarrow{IJ}\left(đpcm\right)\)

Nguyễn cẩm Tú
22 tháng 7 2018 lúc 15:08
Nguyễn cẩm Tú
Xem chi tiết
Hung nguyen
21 tháng 7 2018 lúc 11:42

\(\overrightarrow{RF}+\overrightarrow{IQ}+\overrightarrow{PS}=\overrightarrow{RA}+\overrightarrow{AF}+\overrightarrow{IB}+\overrightarrow{BQ}+\overrightarrow{PC}+\overrightarrow{CS}=\overrightarrow{0}\)

Mysterious Person
21 tháng 7 2018 lúc 11:57

ta có : \(\overrightarrow{RF}+\overrightarrow{IQ}+\overrightarrow{PS}\)

\(=\overrightarrow{RA}+\overrightarrow{AB}+\overrightarrow{BF}+\overrightarrow{IB}+\overrightarrow{BC}+\overrightarrow{CQ}+\overrightarrow{PC}+\overrightarrow{CA}+\overrightarrow{AS}\)

\(=\overrightarrow{RA}+\overrightarrow{BF}+\overrightarrow{IB}+\overrightarrow{CQ}+\overrightarrow{PC}+\overrightarrow{AS}\) \(=\overrightarrow{RS}+\overrightarrow{IF}+\overrightarrow{PQ}=\overrightarrow{AC}+\overrightarrow{BA}+\overrightarrow{CB}=\overrightarrow{0}\left(đpcm\right)\)

Nguyễn cẩm Tú
19 tháng 7 2018 lúc 18:09

Akai Haruma

Lưu Thị Thảo Ly
Xem chi tiết
Mysterious Person
18 tháng 7 2018 lúc 11:20

ta dể dàng chứng minh đc \(DA\) là phân giác góc \(\widehat{EDF}\) (sử dụng tính chất của tứ giác nội tiếp)

từ đó có thể chứng minh được \(DB\) là phân giác của góc \(\widehat{FDG}\) (\(\widehat{FDB}=\widehat{BDG}\) vì cùng phụ \(\dfrac{1}{2}\widehat{EDF}\))

\(\Rightarrow\) \(G\) đối sứng với \(F\) qua \(BC\) \(\Rightarrow\widehat{CGB}=90^o\)

đặc \(C\left(x_c;y_c\right)\) \(\Rightarrow\overrightarrow{CG}\left(2-x_c;-6-y_c\right)\)\(\overrightarrow{BG}\left(6;-2\right)\)

ta có \(\overrightarrow{CG}\perp\overrightarrow{BG}\) (\(\widehat{CGB}=90^o\))

\(\Rightarrow6\left(2-x_c\right)-2\left(-6-y_C\right)=0\) \(\Leftrightarrow-6x_c+2y_c=-24\) (1)

(1) \(C\in d\) \(\Rightarrow\) hpt : \(\left\{{}\begin{matrix}-6x_c+2y_c=-24\\2x_c+y_c-8=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x_c=4\\y_c=0\end{matrix}\right.\) \(\Rightarrow C\left(4;0\right)\)

đặc \(I\)\(CB\cap FG\) có tọa độ là \(I\left(x_i;y_i\right)\)

\(\Rightarrow\overrightarrow{GI}\left(x_i-2;y_i+6\right)\)\(\overrightarrow{BC}\left(8;4\right)\)

ta có : \(\overrightarrow{BC}\perp\overrightarrow{GI}\) \(\Rightarrow8\left(x_i-2\right)+4\left(y_i+6\right)\Leftrightarrow8x_i+4y_i=-8\) (2)

ta có : \(\overrightarrow{BI}\left(x_i+4;y_i+4\right)\)\(\overrightarrow{BI}\uparrow\uparrow\overrightarrow{BC}\)

\(\Rightarrow\dfrac{8}{x_i+4}=\dfrac{4}{y_i+4}\Leftrightarrow-4x_i+8y_i=-16\) (3)

từ (2) với (3) ta có hpt : \(\left\{{}\begin{matrix}8x_i+4y_i=-8\\-4x_i+8y_i=-16\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x_i=0\\y_i=-2\end{matrix}\right.\) \(\Rightarrow I\left(0;-2\right)\)

đặc \(F\left(x_f;y_f\right)\)

ta có : \(I\) là trung điểm \(FG\) \(\Rightarrow\left\{{}\begin{matrix}\dfrac{x_f+2}{2}=0\\\dfrac{y_f-6}{2}=-2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x_f=-2\\y_f=2\end{matrix}\right.\) \(\Rightarrow F\left(-2;2\right)\) \(\Rightarrow\) \(\overrightarrow{FC}\left(6;-2\right)\)

ta có phương trình đường thẳng \(AB\) là phương trình của đường thẳng đi qua \(B\left(-4;-4\right)\) và nhận \(\overrightarrow{FC}\left(6;-2\right)\) làm vectơ pháp tuyến

\(\Rightarrow6\left(x+4\right)-2\left(y+4\right)=0\) \(\Leftrightarrow6x-2y+16=0\)

vậy phương trình của cạnh \(AB\)\(6x-2y+16=0\)

Hung nguyen
17 tháng 7 2018 lúc 16:31

Gợi ý: Gọi H là trực tâm tam giác ABC. Dễ dàng chứng minh được AD là phân giác góc EDF.

=> BD là phân giác góc FDG.

=> FG đối xứng với nhau qua BC.

=> BG vuông góc GC

Vẽ đường GC tìm được tọa độ của C

Vẽ đường BC.

Gọi I là giao điểm của FG và BC tìm tọa độ của I có I rồi tìm được tọa độ của F có F thì vẽ được đường thẳng AB.

Hà Nguyễn
Xem chi tiết
Akai Haruma
14 tháng 7 2018 lúc 11:31

Lời giải:

Phản chứng. Giả sử \(A=a\sqrt{n}+b\sqrt{n+1}\in\mathbb{Q}\)

Bình phương 2 vế:

\(\Rightarrow a^2n+b^2(n+1)+2ab\sqrt{n(n+1)}=A^2\)

\(\Rightarrow 2ab\sqrt{n(n+1)}=A^2-a^2n-b^2(n+1)\in\mathbb{Q}\)

\(2ab\in\mathbb{Q}\Rightarrow \sqrt{n(n+1)}\in\mathbb{Q}\)

Do \(n\in\mathbb{N}^*\Rightarrow n(n+1)\in\mathbb{N}^*\). Suy ra, để \(\sqrt{n(n+1)}\in\mathbb{Q}\) thì nó phải có dạng \(t\) (\(t\in\mathbb{N})\)

Ta có:

\(\sqrt{n(n+1)}=t\)

\(\Rightarrow n(n+1)=t^2\)

\(\Rightarrow 4n(n+1)=(2t)^2\Rightarrow (2n+1)^2=(2t)^2+1\)

\(\Leftrightarrow (2n+1-2t)(2n+1+2t)=1\)

\(\Rightarrow \left\{\begin{matrix} 2n+1-2t=1\\ 2n+1+2t=1\end{matrix}\right.\rightarrow n=0\) (vô lý do \(n\in\mathbb{N}^*\) )

Vậy giả sử là sai. Do đó \(A\not\in\mathbb{Q}\) hay A vô tỉ.

Trần Anh Thư
Xem chi tiết
Akai Haruma
25 tháng 6 2018 lúc 0:00

Câu a)

Có: \(\left\{\begin{matrix} (x+y)^2+3y^2=7\\ x+2y(x+1)=5\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x^2+4y^2+2xy=7\\ x+2y=5-2xy\end{matrix}\right.\)

\(\Rightarrow \left\{\begin{matrix} x^2+4y^2+2xy=7\\ x^2+4y^2+4xy=(5-2xy)^2\end{matrix}\right.\)

Lấy PT(2) trừ PT(1) thu được:

\(2xy=(5-2xy)^2-7\)

\(\Leftrightarrow 2(xy)^2-11xy+9=0\)

\(\Rightarrow xy=\frac{9}{2}\) hoặc \(xy=1\) hay \(\left[\begin{matrix} 2xy=9\\ 2xy=2\end{matrix}\right.\)

Nếu \(2xy=9\Rightarrow x+2y=5-2xy=-4\)

Theo định lý Viete đảo thì $x,2y$ là nghiệm của PT:

\(X^2+4X+9=0\)\(\Leftrightarrow (X+2)^2+5=0\) (vl)

Nếu \(2xy=2\Rightarrow x+2y=5-2xy=3\)

Theo định lý Viete đảo thì $x,2y$ là nghiệm của PT:

\(X^2-3X+2=0\Rightarrow (x,2y)=(2,1); (1,2)\)

\(\Rightarrow (x,y)=(2,\frac{1}{2}); (1; 1)\)

Akai Haruma
25 tháng 6 2018 lúc 0:10

Câu b:

\(\left\{\begin{matrix} x(y-1)+2y=x(x+1)(1)\\ \sqrt{2x-1}+xy-3y+1=0(2)\end{matrix}\right.\)

Từ \((1)\Leftrightarrow y(x+2)=x(x+1)+x\)

\(\Leftrightarrow y(x+2)=x(x+2)\Leftrightarrow (x+2)(y-x)=0\)

\(\Rightarrow \left[\begin{matrix} x=-2\\ x=y\end{matrix}\right.\)

Nếu \(x=-2\) thay vào (2) thấy ngay vô lý vì ĐKXĐ là \(x\geq \frac{1}{2}\)

Nếu \(x=y\), thay vào (2): \(\sqrt{2x-1}+x^2-3x+1=0\)

\(\Leftrightarrow (\sqrt{2x-1}-x)+(x^2-2x+1)=0\)

\(\Leftrightarrow \frac{2x-1-x^2}{\sqrt{2x-1}+x}+(x-1)^2=0\)

\(\Leftrightarrow (x-1)^2\left[1-\frac{1}{\sqrt{2x-1}+x}\right]=0\)

\(\Rightarrow \left[\begin{matrix} x=1\\ \sqrt{2x-1}+x=1\end{matrix}\right.\)

Với trường hợp \(\sqrt{2x-1}+x=1(x\leq 1)\Rightarrow \sqrt{2x-1}=1-x\)

\(\Rightarrow 2x-1=(1-x)^2=x^2-2x+1\)

\(\Leftrightarrow x^2-4x+2=0\Rightarrow x=2\pm \sqrt{2}\). Vì \(\frac{1}{2}\leq x\leq 1\Rightarrow x=2-\sqrt{2}\)

Vậy \((x,y)=(1,1); (2-\sqrt{2}; 2-\sqrt{2})\)

Khải Trần Anh Hoa
25 tháng 6 2018 lúc 11:00

tao chào mẹ mày

Lông_Xg
Xem chi tiết
Akai Haruma
8 tháng 6 2018 lúc 7:49

Bài 1:
Áp dụng BĐT Bunhiacopxky ta có:

\((a^2+2c^2)(1+2)\geq (a+2c)^2\)

\(\Rightarrow \sqrt{a^2+2c^2}\geq \frac{a+2c}{\sqrt{3}}\)

\(\Rightarrow \frac{\sqrt{a^2+2c^2}}{ac}\geq \frac{a+2c}{\sqrt{3}ac}=\frac{ab+2bc}{\sqrt{3}abc}\)

Hoàn toàn tương tự: \(\left\{\begin{matrix} \frac{\sqrt{c^2+2b^2}}{bc}\geq \frac{ac+2ab}{\sqrt{3}abc}\\ \frac{\sqrt{b^2+2a^2}}{ab}\geq \frac{bc+2ac}{\sqrt{3}abc}\end{matrix}\right.\)

Cộng theo vế các BĐT trên thu được:

\(\text{VT}\geq \frac{1}{\sqrt{3}}.\frac{ab+2bc+ac+2ab+bc+2ac}{abc}=\frac{1}{\sqrt{3}}.\frac{3(ab+bc+ac)}{abc}=\frac{1}{\sqrt{3}}.\frac{3abc}{abc}=\sqrt{3}\)

Ta có đpcm

Dấu bằng xảy ra khi $a=b=c=3$

Akai Haruma
8 tháng 6 2018 lúc 8:06

Bài 2: Bài này sử dụng pp xác định điểm rơi thôi.

Áp dụng BĐT AM-GM ta có:

\(24a^2+24.(\frac{31}{261})^2\geq 2\sqrt{24^2.(\frac{31}{261})^2a^2}=\frac{496}{87}a\)

\(b^2+(\frac{248}{87})^2\geq 2\sqrt{(\frac{248}{87})^2.b^2}=\frac{496}{87}b\)

\(93c^2+93.(\frac{8}{261})^2\geq 2\sqrt{93^2.(\frac{8}{261})^2c^2}=\frac{496}{87}c\)

Cộng theo vế:

\(B+\frac{248}{29}\geq \frac{496}{87}(a+b+c)=\frac{496}{87}.3=\frac{496}{29}\)

\(\Rightarrow B\geq \frac{496}{29}-\frac{248}{29}=\frac{248}{29}\)

Vậy \(B_{\min}=\frac{248}{29}\). Dấu bằng xảy ra khi: \((a,b,c)=(\frac{31}{261}; \frac{248}{87}; \frac{8}{261})\)

Trình An Nhã
Xem chi tiết