Phương trình chứa căn

Anh Tú Dương

Cho: a, b, c > 0; ab + bc + ca = 1.

Tìm max của: A = \(\frac{x}{\sqrt{x^2+1}+x}\)+ \(\frac{y}{\sqrt{y^2+1}+y}\)+ \(\frac{z}{\sqrt{z^2+1}+z}\)

Nguyễn Quang Định
Nguyễn Quang Định 22 tháng 7 2018 lúc 9:36

\(A=\sum\dfrac{x}{\sqrt{x^2+1}+x}=\sum\dfrac{x}{\sqrt{x^2+xy+yz+xz}+x}=\sum\dfrac{x}{\sqrt{\left(x+y\right)\left(x+z\right)}+x}\le\sum\dfrac{x}{\sqrt{xy}+\sqrt{xz}+x}=\sum\dfrac{\sqrt{x}}{\sqrt{y}+\sqrt{x}+\sqrt{z}}=1\)

Bình luận (2)

Các câu hỏi tương tự
Loading...