ta dể dàng chứng minh đc \(DA\) là phân giác góc \(\widehat{EDF}\) (sử dụng tính chất của tứ giác nội tiếp)
từ đó có thể chứng minh được \(DB\) là phân giác của góc \(\widehat{FDG}\) (\(\widehat{FDB}=\widehat{BDG}\) vì cùng phụ \(\dfrac{1}{2}\widehat{EDF}\))
\(\Rightarrow\) \(G\) đối sứng với \(F\) qua \(BC\) \(\Rightarrow\widehat{CGB}=90^o\)
đặc \(C\left(x_c;y_c\right)\) \(\Rightarrow\overrightarrow{CG}\left(2-x_c;-6-y_c\right)\) và \(\overrightarrow{BG}\left(6;-2\right)\)
ta có \(\overrightarrow{CG}\perp\overrightarrow{BG}\) (\(\widehat{CGB}=90^o\))
\(\Rightarrow6\left(2-x_c\right)-2\left(-6-y_C\right)=0\) \(\Leftrightarrow-6x_c+2y_c=-24\) (1)
(1) và \(C\in d\) \(\Rightarrow\) hpt : \(\left\{{}\begin{matrix}-6x_c+2y_c=-24\\2x_c+y_c-8=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x_c=4\\y_c=0\end{matrix}\right.\) \(\Rightarrow C\left(4;0\right)\)
đặc \(I\) là \(CB\cap FG\) có tọa độ là \(I\left(x_i;y_i\right)\)
\(\Rightarrow\overrightarrow{GI}\left(x_i-2;y_i+6\right)\) và \(\overrightarrow{BC}\left(8;4\right)\)
ta có : \(\overrightarrow{BC}\perp\overrightarrow{GI}\) \(\Rightarrow8\left(x_i-2\right)+4\left(y_i+6\right)\Leftrightarrow8x_i+4y_i=-8\) (2)
ta có : \(\overrightarrow{BI}\left(x_i+4;y_i+4\right)\) và \(\overrightarrow{BI}\uparrow\uparrow\overrightarrow{BC}\)
\(\Rightarrow\dfrac{8}{x_i+4}=\dfrac{4}{y_i+4}\Leftrightarrow-4x_i+8y_i=-16\) (3)
từ (2) với (3) ta có hpt : \(\left\{{}\begin{matrix}8x_i+4y_i=-8\\-4x_i+8y_i=-16\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x_i=0\\y_i=-2\end{matrix}\right.\) \(\Rightarrow I\left(0;-2\right)\)
đặc \(F\left(x_f;y_f\right)\)
ta có : \(I\) là trung điểm \(FG\) \(\Rightarrow\left\{{}\begin{matrix}\dfrac{x_f+2}{2}=0\\\dfrac{y_f-6}{2}=-2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x_f=-2\\y_f=2\end{matrix}\right.\) \(\Rightarrow F\left(-2;2\right)\) \(\Rightarrow\) \(\overrightarrow{FC}\left(6;-2\right)\)
ta có phương trình đường thẳng \(AB\) là phương trình của đường thẳng đi qua \(B\left(-4;-4\right)\) và nhận \(\overrightarrow{FC}\left(6;-2\right)\) làm vectơ pháp tuyến
\(\Rightarrow6\left(x+4\right)-2\left(y+4\right)=0\) \(\Leftrightarrow6x-2y+16=0\)
vậy phương trình của cạnh \(AB\) là \(6x-2y+16=0\)
Gợi ý: Gọi H là trực tâm tam giác ABC. Dễ dàng chứng minh được AD là phân giác góc EDF.
=> BD là phân giác góc FDG.
=> FG đối xứng với nhau qua BC.
=> BG vuông góc GC
Vẽ đường GC tìm được tọa độ của C
Vẽ đường BC.
Gọi I là giao điểm của FG và BC tìm tọa độ của I có I rồi tìm được tọa độ của F có F thì vẽ được đường thẳng AB.