Chương 3: PHƯƠNG PHÁP TỌA ĐỘ TRONG MẶT PHẲNG

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Lưu Thị Thảo Ly

Trong mặt phẳng Oxy cho tam giác ABC có B (-4 ,- 4) Gọi D ,E ,F lần lượt là chân đường cao hạ từ các đỉnh A, B, C điểm G là điểm thuộc tia đối tia DE thỏa mãn DG =DF .cho G(2, - 6 ),C thuộc d: 2x + y - 8 = 0 .Viết phương trình cạnh AB

Mysterious Person
18 tháng 7 2018 lúc 11:20

ta dể dàng chứng minh đc \(DA\) là phân giác góc \(\widehat{EDF}\) (sử dụng tính chất của tứ giác nội tiếp)

từ đó có thể chứng minh được \(DB\) là phân giác của góc \(\widehat{FDG}\) (\(\widehat{FDB}=\widehat{BDG}\) vì cùng phụ \(\dfrac{1}{2}\widehat{EDF}\))

\(\Rightarrow\) \(G\) đối sứng với \(F\) qua \(BC\) \(\Rightarrow\widehat{CGB}=90^o\)

đặc \(C\left(x_c;y_c\right)\) \(\Rightarrow\overrightarrow{CG}\left(2-x_c;-6-y_c\right)\)\(\overrightarrow{BG}\left(6;-2\right)\)

ta có \(\overrightarrow{CG}\perp\overrightarrow{BG}\) (\(\widehat{CGB}=90^o\))

\(\Rightarrow6\left(2-x_c\right)-2\left(-6-y_C\right)=0\) \(\Leftrightarrow-6x_c+2y_c=-24\) (1)

(1) \(C\in d\) \(\Rightarrow\) hpt : \(\left\{{}\begin{matrix}-6x_c+2y_c=-24\\2x_c+y_c-8=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x_c=4\\y_c=0\end{matrix}\right.\) \(\Rightarrow C\left(4;0\right)\)

đặc \(I\)\(CB\cap FG\) có tọa độ là \(I\left(x_i;y_i\right)\)

\(\Rightarrow\overrightarrow{GI}\left(x_i-2;y_i+6\right)\)\(\overrightarrow{BC}\left(8;4\right)\)

ta có : \(\overrightarrow{BC}\perp\overrightarrow{GI}\) \(\Rightarrow8\left(x_i-2\right)+4\left(y_i+6\right)\Leftrightarrow8x_i+4y_i=-8\) (2)

ta có : \(\overrightarrow{BI}\left(x_i+4;y_i+4\right)\)\(\overrightarrow{BI}\uparrow\uparrow\overrightarrow{BC}\)

\(\Rightarrow\dfrac{8}{x_i+4}=\dfrac{4}{y_i+4}\Leftrightarrow-4x_i+8y_i=-16\) (3)

từ (2) với (3) ta có hpt : \(\left\{{}\begin{matrix}8x_i+4y_i=-8\\-4x_i+8y_i=-16\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x_i=0\\y_i=-2\end{matrix}\right.\) \(\Rightarrow I\left(0;-2\right)\)

đặc \(F\left(x_f;y_f\right)\)

ta có : \(I\) là trung điểm \(FG\) \(\Rightarrow\left\{{}\begin{matrix}\dfrac{x_f+2}{2}=0\\\dfrac{y_f-6}{2}=-2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x_f=-2\\y_f=2\end{matrix}\right.\) \(\Rightarrow F\left(-2;2\right)\) \(\Rightarrow\) \(\overrightarrow{FC}\left(6;-2\right)\)

ta có phương trình đường thẳng \(AB\) là phương trình của đường thẳng đi qua \(B\left(-4;-4\right)\) và nhận \(\overrightarrow{FC}\left(6;-2\right)\) làm vectơ pháp tuyến

\(\Rightarrow6\left(x+4\right)-2\left(y+4\right)=0\) \(\Leftrightarrow6x-2y+16=0\)

vậy phương trình của cạnh \(AB\)\(6x-2y+16=0\)

Hung nguyen
17 tháng 7 2018 lúc 16:31

Gợi ý: Gọi H là trực tâm tam giác ABC. Dễ dàng chứng minh được AD là phân giác góc EDF.

=> BD là phân giác góc FDG.

=> FG đối xứng với nhau qua BC.

=> BG vuông góc GC

Vẽ đường GC tìm được tọa độ của C

Vẽ đường BC.

Gọi I là giao điểm của FG và BC tìm tọa độ của I có I rồi tìm được tọa độ của F có F thì vẽ được đường thẳng AB.


Các câu hỏi tương tự
Big City Boy
Xem chi tiết
Thu Hà Lê
Xem chi tiết
Freya
Xem chi tiết
hang nguyenthiminh
Xem chi tiết
Nguyễn Thị An
Xem chi tiết
Ngọc Lan
Xem chi tiết
Hữu Hoàng Vũ
Xem chi tiết
Thùy
Xem chi tiết
muon tim hieu
Xem chi tiết