Toán

Quang 1912
Xem chi tiết
Akai Haruma
26 tháng 1 2018 lúc 14:53

Lời giải:

$AB,BC,AC$ tỉ lệ với $4,7,5$ \(\Leftrightarrow \frac{AB}{4}=\frac{BC}{7}=\frac{CA}{5}(*)\)

a) Sử dụng công thức đường phân giác kết hợp với \((*)\) ta có:

\(\frac{MC}{BM}=\frac{AC}{AB}=\frac{5}{4}\)

\(\Rightarrow \frac{MC}{BM+MC}=\frac{5}{4+5}\Leftrightarrow \frac{MC}{BC}=\frac{5}{9}\)

\(\Rightarrow MC=\frac{5}{9}BC=\frac{5}{9}.18=10\) (cm)

b) Sử dụng công thức đường phân giác kết hợp với \((*)\) ta có:

\(\frac{NC}{NA}=\frac{BC}{AB}=\frac{7}{4}\)\(\Leftrightarrow \frac{NC}{7}=\frac{NA}{4}\)

Áp dụng tính chất dãy tỉ số bằng nhau:

\(\frac{NC+NA}{7+4}=\frac{NC}{7}=\frac{NA}{4}=\frac{NC-NA}{7-4}\)

\(\Leftrightarrow \frac{AC}{11}=\frac{3}{3}=1\Rightarrow AC=11\) (cm)

c)

Vì $AO$ là phân giác góc $PAC$, $BO$ là phân giác góc $PBC$ nên áp dụng công thức đường phân giác:

\(\frac{OP}{OC}=\frac{AP}{AC}=\frac{BP}{BC}\)

AD tính chất dãy tỉ số bằng nhau:

\(\frac{OP}{OC}=\frac{AP}{AC}=\frac{BP}{BC}=\frac{AP+BP}{AC+BC}=\frac{AB}{AC+BC}\)

Theo \((*)\Rightarrow AC=\frac{5}{4}AB; BC=\frac{7}{4}AB\)

\(\frac{OP}{OC}=\frac{AB}{AC+BC}=\frac{AB}{\frac{5}{4}AB+\frac{7}{4}AB}=\frac{AB}{3AB}=\frac{1}{3}\)

d) Áp dụng công thức đường phân giác:

\(\left\{\begin{matrix} \frac{MB}{MC}=\frac{AB}{AC}\\ \frac{NC}{NA}=\frac{BC}{AB}\\ \frac{PA}{PB}=\frac{AC}{BC}\end{matrix}\right.\Rightarrow \frac{MB}{MC}.\frac{NC}{NA}.\frac{PA}{PB}=\frac{AB}{AC}.\frac{BC}{AB}.\frac{AC}{BC}=1\)

(đpcm)

Chứng minh \(\frac{1}{AM}+\frac{1}{BN}+\frac{1}{CP}>\frac{1}{AB}+\frac{1}{BC}+\frac{1}{AC}\)

Kẻ \(MH\perp AB, MK\perp AC, CL\perp AB\)

Ta có bổ đề sau: \(\sin (2\alpha)=2\sin \alpha\cos \alpha\)

Chứng minh :

Thật vậy, xét một tam giác $ABC$ vuông tại $A$ có đường cao $AH$ và trung tuyến $AM$, góc \(\angle ACB=\alpha\)

Khi đó: \(AM=MB=MC=\frac{BC}{2}\Rightarrow \triangle AMC\) cân tại $M$
\(\Rightarrow \angle MAC=\angle MCA=\alpha\)

\(\Rightarrow \angle HMA=\angle MAC+\angle MCA=2\alpha\)

\(\Rightarrow \sin 2\alpha=\sin HMA=\frac{HA}{MA}=\frac{HA}{\frac{BC}{2}}=\frac{2HA}{BC}\) (1)

Lại có: \(\sin \alpha=\sin \angle ACB=\frac{AH}{AC}\)

\(\cos \alpha=\frac{AC}{BC}\)

\(\Rightarrow \sin \alpha\cos \alpha=\frac{AH}{AC}.\frac{AC}{BC}=\frac{AH}{BC}\) (2)

Từ (1); (2) suy ra \(\sin 2\alpha=2\sin \alpha\cos \alpha\) (đpcm)

------------------------------

Áp dụng vào bài toán:

Ta có: \(\sin A=2\sin \frac{A}{2}\cos \frac{A}{2}\)

\(S_{ABM}+S_{AMC}=S_{ABC}\)

\(\Leftrightarrow \frac{MH.AB}{2}+\frac{MK.AC}{2}=\frac{CL.AB}{2}\)

\(\Leftrightarrow AB.\sin \frac{A}{2}.AM+\sin \frac{A}{2}.AM.AC=\sin A.AC.AB\)

\(\Leftrightarrow AM=\frac{\sin A.AB.AC}{\sin \frac{A}{2}.AB+\sin \frac{A}{2}.AC}=\frac{2\sin \frac{A}{2}\cos \frac{A}{2}.AB.AC}{\sin \frac{A}{2}.AB+\sin \frac{A}{2}.AC}\)

\(\Leftrightarrow AM=\frac{2\cos \frac{A}{2}.AB.AC}{AB+AC}\)

\(\Leftrightarrow \frac{1}{AM}=\frac{AB+AC}{2AB.AC\cos \frac{A}{2}}=\frac{1}{2\cos \frac{A}{2}}(\frac{1}{AB}+\frac{1}{AC})\)

Tương tự: \(\frac{1}{BN}=\frac{1}{2\cos \frac{B}{2}}(\frac{1}{BA}+\frac{1}{BC})\)

\(\frac{1}{CP}=\frac{1}{2\cos \frac{C}{2}}(\frac{1}{CB}+\frac{1}{CA})\)

Cộng theo vế:

\(\frac{1}{AM}+\frac{1}{BN}+\frac{1}{CP}=\frac{1}{2\cos \frac{A}{2}}(\frac{1}{AB}+\frac{1}{AC})+\frac{1}{2\cos \frac{B}{2}}(\frac{1}{BA}+\frac{1}{BC})+\frac{1}{2\cos \frac{C}{2}}(\frac{1}{CA}+\frac{1}{CB})\)

\(> \frac{1}{2}(\frac{1}{AB}+\frac{1}{AC})+\frac{1}{2}(\frac{1}{BC}+\frac{1}{AC})+\frac{1}{2}(\frac{1}{CB}+\frac{1}{CA})\) (do \(\cos \alpha < 1\) vì cạnh góc vuông luôn nhỏ hơn cạnh huyền)

\(\Leftrightarrow \frac{1}{AM}+\frac{1}{BN}+\frac{1}{CP}> \frac{1}{AB}+\frac{1}{BC}+\frac{1}{CA}\)

Ta có đpcm.

 

 

 

 

Bình luận (6)
Nguyễn Tuấn
Xem chi tiết
TNA Atula
26 tháng 1 2018 lúc 22:08

Ta co : (x+y)2≤2(x2+y2)

=> x+y≤\(\sqrt{2\left(x^2+y^2\right)}\)

=> \(\dfrac{z^2}{x+y}\ge\dfrac{z^2}{\sqrt{2\left(x^2+y^2\right)}}\)

Tuong tu: \(\dfrac{x^2}{y+z}\ge\dfrac{x^2}{\sqrt{2\left(y^2+z^2\right)}}\)

\(\dfrac{y^2}{x+z}\ge\dfrac{y^2}{\sqrt{2\left(x+z\right)}}\)

VT≥\(\dfrac{x^2}{\sqrt{2\left(y^2+z^2\right)}}+\dfrac{y^2}{\sqrt{2\left(x^2+z^2\right)}}+\dfrac{z^2}{\sqrt{2\left(x^2+y^2\right)}}\)

Dat : \(\sqrt{y^2+z^2}=a\)

\(\sqrt{x^2+z^2}=b\)

\(\sqrt{x^2+y^2}=c\)

=> a+b+c=2015 , a2=y2+z2 , b2=x2+z2 , c2=x2+y2

=> VT≥ \(\dfrac{b^2+c^2-a^2}{2\sqrt{2}.a}+\dfrac{a^2+c^2-b^2}{2\sqrt{2}.b}+\dfrac{a^2+b^2-c^2}{2\sqrt{2}c}\)

\(\dfrac{1}{2\sqrt{2}}\left[\dfrac{\left(b+c\right)^2}{2a}+\dfrac{\left(a+b\right)^2}{2c}+\dfrac{\left(a+c\right)^2}{2b}-2015\right]\)

\(\dfrac{1}{2\sqrt{2}}\left[2\left(a+b+c\right)-2015\right]\)

= \(\dfrac{2015}{2\sqrt{2}}\)

Bình luận (0)
Ngọc Hạnh
Xem chi tiết
Akai Haruma
26 tháng 1 2018 lúc 11:02

Lời giải:

Đặt biểu thức đã cho là $A$

Ta có:

\(A=\sqrt{\frac{a}{b+c+2a}}+\sqrt{\frac{b}{a+c+2b}}+\sqrt{\frac{c}{a+b+2c}}\)

\(A=\sqrt{\frac{a}{(a+b)+(a+c)}}+\sqrt{\frac{b}{(b+c)+(b+a)}}+\sqrt{\frac{c}{(c+a)+(c+b)}}\)

Áp dụng BĐT AM-GM:

\(A\leq\sqrt{\frac{a}{2\sqrt{(a+b)(a+c)}}}+\sqrt{\frac{b}{2\sqrt{(b+c)(b+a)}}}+\sqrt{\frac{c}{2\sqrt{(c+a)(c+b)}}}\)

\(\Leftrightarrow A\leq \sqrt[4]{\frac{a^2}{4(a+b)(a+c)}}+\sqrt[4]{\frac{b^2}{4(b+c)(b+a)}}+\sqrt[4]{\frac{c^2}{4(c+a)(c+b)}}(*)\)

Tiếp tục áp dụng AM-GM:

\(\sqrt[4]{\frac{a^2}{4(a+b)(a+c)}}\leq \frac{1}{4}\left(\frac{a}{a+b}+\frac{a}{a+c}+\frac{1}{2}+\frac{1}{2}\right)\)

\(\sqrt[4]{\frac{b^2}{4(b+c)(b+a)}}\leq \frac{1}{4}\left(\frac{b}{b+c}+\frac{b}{a+b}+\frac{1}{2}+\frac{1}{2}\right)\)

\(\sqrt[4]{\frac{c^2}{4(c+a)(c+b)}}\leq \frac{1}{4}\left(\frac{c}{c+a}+\frac{c}{c+b}+\frac{1}{2}+\frac{1}{2}\right)\)

Cộng theo vế kết hợp với $(*)$

\(\Rightarrow A\leq \frac{1}{4}\left(\frac{a+b}{a+b}+\frac{b+c}{b+c}+\frac{c+a}{c+a}+6.\frac{1}{2}\right)\)

\(\Leftrightarrow A\leq \frac{1}{4}.6=\frac{3}{2}\)

Vậy \(A_{\max}=\frac{3}{2}\Leftrightarrow a=b=c\)

Bình luận (0)
tthnew
4 tháng 9 2019 lúc 7:19

\(a=b=c\rightarrow P=\frac{3}{2}\). Ta se c/m do la gtln của P. Thật vậy:

\(\frac{1}{2}P=\sqrt{\frac{1}{4}.\frac{a}{b+c+2a}}+...\)

\(\le\frac{1}{2}\left(\frac{1}{4}+\frac{a}{b+c+2a}+\frac{1}{4}+\frac{b}{c+a+2b}+\frac{1}{4}+\frac{c}{a+b+2c}\right)\)

\(=\frac{1}{2}\left(\frac{3}{4}+\frac{a}{\left(b+a\right)+\left(c+a\right)}+\frac{b}{\left(c+b\right)+\left(b+a\right)}+\frac{c}{\left(c+a\right)+\left(c+b\right)}\right)\)

\(\le\frac{1}{2}\left[\frac{3}{4}+\frac{1}{4}\left(\frac{a+b}{a+b}+\frac{b+c}{b+c}+\frac{c+a}{c+a}\right)\right]=\frac{3}{4}\)

Do đó \(P\le\frac{3}{2}\)

Đẳng thức xảy ra khi a = b = c

Bình luận (0)
Võ Đông Anh Tuấn
Xem chi tiết
Võ Đông Anh Tuấn
28 tháng 1 2018 lúc 20:36

@Akai Haruma giúp em bài này đc k ạ :((

Bình luận (1)
Anh Khương Vũ Phương
Xem chi tiết
Akai Haruma
25 tháng 1 2018 lúc 13:30

Lời giải:

Ta có: \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1\Leftrightarrow xy+yz+xz=xyz\)

\(\Rightarrow x^2+xy+yz+xz=x^2+xyz=x(x+yz)\)

\(\Leftrightarrow x+yz=\frac{x^2+xy+yz+xz}{x}=\frac{(x+y)(x+z)}{x}\)

\(\Rightarrow \sqrt{x+yz}=\sqrt{\frac{(x+y)(x+z)}{x}}\)

Áp dụng BĐT Bunhiacopxky:\((x+y)(x+z)\geq (x+\sqrt{yz})^2\)

\(\Rightarrow \sqrt{x+yz}=\sqrt{\frac{(x+y)(x+z)}{x}}\geq \frac{x+\sqrt{yz}}{\sqrt{x}}\)

Hoàn toàn tương tự:

\(\sqrt{y+xz}\geq \frac{y+\sqrt{xz}}{\sqrt{y}}\); \(\sqrt{z+xy}\geq \frac{z+\sqrt{xy}}{\sqrt{z}}\)

Cộng theo vế các BĐT đã thu được ta có:

\(\text{VT}\geq \frac{x+\sqrt{yz}}{\sqrt{x}}+\frac{y+\sqrt{xz}}{\sqrt{y}}+\frac{z+\sqrt{xy}}{\sqrt{z}}=\sqrt{x}+\sqrt{y}+\sqrt{z}+\frac{xy+yz+xz}{\sqrt{xyz}}\)

\(\Leftrightarrow \text{VT}\geq \sqrt{x}+\sqrt{y}+\sqrt{z}+\frac{xyz}{\sqrt{xyz}}=\sqrt{x}+\sqrt{y}+\sqrt{z}+\sqrt{xyz}=\text{VP}\)

Do đó ta có đpcm.

Dấu bằng xảy ra khi \(x=y=z=3\)

Bình luận (0)
Xem chi tiết
Akai Haruma
25 tháng 1 2018 lúc 13:53

Lời giải:

Ta có:

\(\text{VT}=\frac{1}{x^2+y^2+2}+\frac{1}{y^2+z^2+2}+\frac{1}{z^2+x^2+2}\)

\(\Rightarrow 2\text{VT}=\frac{2}{x^2+y^2+2}+\frac{2}{y^2+z^2+2}+\frac{2}{z^2+x^2+2}\)

\(2\text{VT}=1-\frac{x^2+y^2}{x^2+y^2+2}+1-\frac{y^2+z^2}{y^2+z^2+2}+1-\frac{z^2+x^2}{z^2+x^2+2}\)

\(2\text{VT}=3-\left(\frac{x^2+y^2}{x^2+y^2+2}+\frac{y^2+z^2}{y^2+z^2+2}+\frac{z^2+x^2}{z^2+x^2+2}\right)=3-A\)

Áp dụng BĐT Cauchy-Schwarz:

\(A\geq \frac{(\sqrt{x^2+y^2}+\sqrt{y^2+z^2}+\sqrt{z^2+x^2})^2}{2(x^2+y^2+z^2)+6}=\frac{(\sqrt{x^2+y^2}+\sqrt{y^2+z^2}+\sqrt{z^2+x^2})^2}{2(x^2+y^2+z^2+xy+yz+xz)}(*)\)

Xét tử số:

\((\sqrt{x^2+y^2}+\sqrt{y^2+z^2}+\sqrt{z^2+x^2})^2\)

\(=2(x^2+y^2+z^2)+2(\sqrt{(x^2+y^2)(x^2+z^2)}+\sqrt{(x^2+y^2)(y^2+z^2)}+\sqrt{(y^2+z^2)(z^2+x^2)})\)

Áp dụng BĐT Bunhiacopxky:

\(\sqrt{(x^2+y^2)(x^2+z^2)}\geq \sqrt{(x^2+yz)^2}=x^2+yz\)

\(\sqrt{(x^2+y^2)(y^2+z^2)}\geq \sqrt{(xz+y^2)^2}=xz+y^2\)

\(\sqrt{(y^2+z^2)(z^2+x^2)}\geq \sqrt{(z^2+xy)^2}=z^2+xy\)

\(\Rightarrow \sum \sqrt{(x^2+y^2)(x^2+z^2)}\geq x^2+y^2+z^2+xy+yz+xz\)

\(\Rightarrow (\sqrt{x^2+y^2}+\sqrt{y^2+z^2}+\sqrt{z^2+x^2})^2\geq 4(x^2+y^2+z^2)+2(xy+yz+xz)\)

\(\geq 3(x^2+y^2+z^2)+3(xy+yz+xz)=3(x^2+y^2+z^2+xy+yz+xz)\)

(theo BĐT AM-GM)

Do đó: Từ \((*)\Rightarrow A\geq \frac{3(x^2+y^2+z^2+xy+yz+xz)}{2(x^2+y^2+z^2+xy+yz+xz)}=\frac{3}{2}\)

\(\Rightarrow 2\text{VT}\leq 3-\frac{3}{2}=\frac{3}{2}\)

\(\Rightarrow \text{VT}\leq \frac{3}{4}\) (đpcm)

Dấu bằng xảy ra khi \(x=y=z=1\)

Bình luận (0)
Lightning Farron
26 tháng 1 2018 lúc 13:31

We have: \(\dfrac{1}{x^2+y^2+2}=\dfrac{1}{x^2+y^2+z^2+2-z^2}\le\dfrac{1}{5-z^2}\)

Similarly and by adding them:

\(\dfrac{1}{5-x^2}+\dfrac{1}{5-y^2}+\dfrac{1}{5-z^2}\le\dfrac{3}{4}\left(\circledast\right)\)

We know that \(\dfrac{1}{5-x^2}\le\dfrac{3\left(x^2+x\right)}{8\left(x^2+x+1\right)}\)

\(\Leftrightarrow-\dfrac{\left(x-1\right)^2\left(3x^2+9x+8\right)}{8\left(x^2-5\right)\left(x^2+x+1\right)}\le0\) It's obviously

\(\Rightarrow L.H.S_{\left(\circledast\right)}\le\dfrac{3}{8}\left(\dfrac{x^2+x}{x^2+x+1}+\dfrac{y^2+y}{y^2+y+1}+\dfrac{z^2+z}{z^2+z+1}\right)\le\dfrac{3}{4}\)

The equality occur when \(x=y=z=1\)

Done!

Bình luận (7)
cong chua gia bang
Xem chi tiết
Nguyễn Diệu Linh
27 tháng 2 2016 lúc 20:39

 bạn ơi , sai đề rồi

Bình luận (0)
Tu Quyen
13 tháng 9 2016 lúc 18:25

mình làm ko ra

Bình luận (0)
Tu Quyen
13 tháng 9 2016 lúc 18:25

bạn có chép sai đề ko

Bình luận (0)
Tiểu Thư họ Nguyễn
Xem chi tiết
Lê Thị Vân Anh
Xem chi tiết
Akai Haruma
20 tháng 1 2018 lúc 18:07

Lời giải:

Ta có:

\(A=x^3-3x^2+x+2=x^2(x-2)-x(x-2)-(x-2)\)

\(A=(x-2)(x^2-x-1)\)

Xét TH \(x^2-x-1<0\Leftrightarrow 4x^2-4x-4<0\)

\(\Leftrightarrow (2x-1)^2-5<0\)

\(\Leftrightarrow (2x-1)^2<5<9\)

\(\Leftrightarrow -3< 2x-1< 3\Leftrightarrow -1< x< 2\)

Thử \(x=0; 1\) có \(x=1\) thỏa mãn.

Xét TH \(x^2-x-1\geq 0\Rightarrow x-2\geq 0\)

Gọi $d$ là ước chung lớn nhất giữa \((x-2, x^2-x-1)\)

\(\Rightarrow \left\{\begin{matrix} x-2\vdots d\rightarrow (x-2)(x+1)\vdots d\\ x^2-x-1\vdots d\end{matrix}\right.\)

\(\Rightarrow (x^2-x-2)-(x^2-x-1)\vdots d\)

\(\Leftrightarrow 1\vdots d\Rightarrow d=1\)

Do đó $x-2, x^2-x-1$ nguyên tố cùng nhau. Do đó để A là số chính phương thì bản thân $x-2$ và $x^2-x-1$ là số chính phương

Đặt \(\left\{\begin{matrix} x-2=a^2\\ x^2-x-1=b^2\end{matrix}\right.\)

Xét \(x^2-x-1=b^2\) với \(b\in\mathbb{Z}\). Ta có thể coi \(b\geq 0\)

\(\Rightarrow 4x^2-4x-4=(2b)^2\)

\(\Leftrightarrow (2x-1)^2-5=(2b)^2\)

\(\Leftrightarrow 5=(2x-1-2b)(2x-1+2b)\)

Vì \(2x-1-2b\leq 2x-1+2b\) nên xét các TH sau:

TH1: \(\left\{\begin{matrix} 2x-1-2b=1\\ 2x-1+2b=5\end{matrix}\right.\Rightarrow 4x-2=6\Rightarrow x=2\) (thỏa mãn)

TH2: \(\left\{\begin{matrix} 2x-1-2b=-5\\ 2x-1+2b=-1\end{matrix}\right.\Rightarrow 4x-2=-6\Rightarrow x=-1\) (vô lý vì \(x-2\geq 0\) )

Vậy \(x\in\left\{1; 2\right\}\)

 

 

 

 

 

Bình luận (0)
kudo shinichi
Xem chi tiết
cuongledang
25 tháng 1 2018 lúc 21:52

KUDO sao bn ngốk thế

ko xung lm KUDO

Bình luận (3)