Quoc Tran Anh Le

Like và follow để ủng hộ và giúp đỡ chúng mình phát triển cuộc thi nha :>

Cuộc thi Toán Tiếng Anh VEMC | Facebook

Có câu hỏi hay? Gửi ngay chờ chi:

[Tiền sự kiện 1] Thử sức trí tuệ - Google Biểu mẫu

-------------------------------------------------------------------

Khác với nhiều chuyên mục thường thấy gần đây, lần này mình mang đến cho bạn hai dãy số quy luật. Mang tinh thần "học mà chơi", ai có thể giải được nhanh nhất? Ngoài ra, nếu các bạn có dãy số nào hay, hãy gửi nhé :>

[Toán.C35 _ 24.1.2021]

Điền hai số còn thiếu vào quy luật sau: 0 - 1 - 13 - 61 - ? - ?

[Toán.C36 _ 24.1.2021]

Điền số còn thiếu vào quy luật sau: 32 - 12 - 136 - 176 - ? - 196

Admin
Hạ sĩ -
Hôm qua lúc 13:24

[Toán.C36 _ 24.1.2021]

Điền số còn thiếu vào quy luật sau: 32 - 12 - 136 - 176 - ? - 196

Câu này sai nhé !

Phài là : Điền số còn thiếu vào quy luật sau: 12 - 32 - 136 - 176 - ? - 196

Bình luận (1)
Trương Huy Hoàng
Trung úy -
Hôm qua lúc 15:27

[Toán.C35 _ 24.1.2021]

Điền hai số còn thiếu vào quy luật sau: 0 - 1 - 13 - 61 - ? - ?

0 - 1 - 13 - 61 - 253 - 1021

Chắc đúng :)

Bình luận (5)
hhy-chy
Thượng tá -
Hôm qua lúc 18:35

Thu nhe:

\(0-1-13-61-190-365\)

Bình luận (3)
Quoc Tran Anh Le

Like và follow để ủng hộ và giúp đỡ chúng mình phát triển cuộc thi nha :>

Cuộc thi Toán Tiếng Anh VEMC | Facebook

Có câu hỏi hay? Gửi ngay chờ chi:

[Tiền sự kiện 1] Thử sức trí tuệ - Google Biểu mẫu

-------------------------------------------------------------------

[Toán.C31 _ 24.1.2021]

a) Cho 3a + 4b = 5. Chứng minh rằng: \(a^2+b^2\ge1\).

b) Cho \(2a^2+3b^2=5.\) Chứng minh rằng: \(2a+3b\le5\).

[Toán.C32 _ 24.1.2021]

Với \(0< a\le b\le c\)\(\dfrac{1}{a}+\dfrac{1}{2b}+\dfrac{1}{3c}\ge3;\dfrac{1}{2b}+\dfrac{1}{3c}\ge2;\dfrac{1}{3c}\ge1.\)

Chứng minh rằng: \(a^2+b^2+c^2\le\dfrac{49}{36}\).

[Toán.C33 _ 24.1.2021]

Cho a,b,c > 0. Chứng minh rằng:

\(\dfrac{\left(a+b+c\right)^2}{a^2+b^2+c^2}-\dfrac{1}{2}.\left(\dfrac{a^3+b^3+c^3}{abc}-\dfrac{a^2+b^2+c^2}{ab+bc+ca}\right)\le2.\)

[Toán.C34 _ 23.1.2021]

Cho a,b,c > 0. Chứng minh rằng:

\(\dfrac{a^2}{b}+\dfrac{b^2}{c}+\dfrac{c^2}{a}+a+b+c\ge\dfrac{3\left(a^2+b^2+c^2\right)}{a+b+c}.\)

tthnew
Thiếu tá -
Hôm qua lúc 12:50

Xí câu dễ trước

Câu 31.

a) Thay $b=\dfrac{5-3a}{4}$ vào và rút gọn thì cần chứng minh $(5a-3)^2\geqslant 0.$

b) Ta có: \(5^2=\left(2+3\right)\left(2a^2+3b^2\right)\ge\left(2a+3b\right)^2\Rightarrow2a+3b\le5\)

Đẳng thức xảy ra khi \(a=b=1.\)

Bình luận (0)
tthnew
Thiếu tá -
Hôm qua lúc 13:21

Câu 32. 

BĐT \(\Leftrightarrow a^2+b^2+c^2\le1^2+\left(\dfrac{1}{2}\right)^2+\left(\dfrac{1}{3}\right)^2\)

\(VP=c^2\cdot\dfrac{1}{9c^2}+b^2\cdot\dfrac{1}{4b^2}+a^2\cdot\dfrac{1^2}{a^2}\)

\(=\dfrac{\left(c^2-b^2\right)}{9c^2}+\left(b^2-a^2\right)\left(\dfrac{1}{4b^2}+\dfrac{1}{9c^2}\right)+a^2\left(\dfrac{1}{a^2}+\dfrac{1}{4b^2}+\dfrac{1}{9c^2}\right)\)

\(\ge\left(c^2-b^2\right)\cdot\left(\dfrac{1}{3c}\right)^2+\dfrac{\left(b^2-a^2\right)\left(\dfrac{1}{2b}+\dfrac{1}{3c}\right)^2}{2}+\dfrac{a^2\left(\dfrac{1}{a}+\dfrac{1}{2b}+\dfrac{1}{3c}\right)^2}{3}\)

\(\ge\left(c^2-b^2\right)+2\left(b^2-a^2\right)+3a^2=a^2+b^2+c^2\)

Dấu bằng không xảy ra nên ban đầu em tưởng đề sai.

Bình luận (1)
tthnew
Thiếu tá -
Hôm qua lúc 13:24

Bài 33.

Chuyển về pqr, cần chứng minh:

\({\dfrac { \left( {p}^{2}-3\,q \right) \left( {p}^{3}q-{p}^{2}r-2\,p{q} ^{2}+6\,qr \right) }{2qr \left( {p}^{2}-2\,q \right) }}\geqslant 0 \)

Đây là điều hiển nhiên nếu khai triển biểu thức \({p}^{3}q-{p}^{2}r-2\,p{q}^{2}+6\,qr\) ta sẽ được một đa thức với tất cả hệ số đều dương.

Bình luận (0)
Quoc Tran Anh Le

Like và follow fanpage để ủng hộ và giúp đỡ chúng mình phát triển cuộc thi :>

Cuộc thi Toán Tiếng Anh VEMC | Facebook

Có câu hỏi hay? Gửi ngay chờ chi:

[Tiền sự kiện 1] Thử sức trí tuệ - Google Biểu mẫu

-------------------------------------------------------------------

[Toán.C29 _ 23.1.2021]

Người biên soạn câu hỏi: Hồng Sơn

undefined

[Toán.C30 _ 23.1.2021]

Người biên soạn câu hỏi: Quoc Tran Anh Le

Trích Moldova, 2006: Cho a,b,c là độ dài ba cạnh của một tam giác. Chứng minh rằng:

\(a^2\left(\dfrac{b}{c}-1\right)+b^2\left(\dfrac{c}{a}-1\right)+c^2\left(\dfrac{a}{b}-1\right)\ge0\).

tthnew
Thiếu tá -
Hôm kia lúc 14:17

Gõ lại lần cuối, không được nữa nghỉ chơi hoc24:v

Bất đẳng thức cần chứng minh tương đương với $$a^3b^2+b^3c^2+c^3a^2\geq abc(a^2+b^2+c^2)$$Ta có$2\left( {{a^3}{b^2} + {b^3}{c^2} + {c^3}{a^2}} \right) - 2abc\left( {{a^2} + {b^2} + {c^2}} \right)$$= \displaystyle\LARGE{\sum} {{a^3}} \left( {{b^2} - 2bc + {c^2}} \right) -\displaystyle \LARGE{\sum} {{a^2}} ({b^3} - {c^3})$Mặt khác ta có đẳng thức sau

$${a^2}\left( {{b^3} - {c^3}} \right) + {b^2}\left( {{c^3} - {a^3}} \right) + {c^2}\left( {{a^3} - {b^3}} \right) = {a^2}{\left( {b - c} \right)^2} + {b^2}{\left( {c - a} \right)^2} + {c^2}{\left( {a - b} \right)^2}$$Từ đó dễ dàng thu được$$2\left( {{a^3}{b^2} + {b^3}{c^2} + {c^3}{a^2}} \right) - 2abc\left( {{a^2} + {b^2} + {c^2}} \right)$$$$= {a^2}{\left( {b - c} \right)^2}\left( {a - b + c} \right) + {b^2}{\left( {c - a} \right)^2}\left( {b - c + a} \right) + {c^2}{(a - b)^2}\left( {c - a + b} \right)$$$$= {S_a}{\left( {b - c} \right)^2} + {S_b}{\left( {c - a} \right)^2} + {S_c}{\left( {a - b} \right)^2}$$Với $${S_a} = {a^2}\left( {a - b + c} \right)$$$${S_b} = {b^2}\left( {b - c + a} \right)$$$${S_c} = {c^2}\left( {c - a + b} \right)$$Do $a,$$b,$$c$ là độ dài ba cạnh tam giác nên rõ ràng $S_a,S_b,S_c$ không âm. Ta thu được điều hiển nhiên.

Bình luận (4)
Quoc Tran Anh Le

Like và follow fanpage để cập nhật những tin tức mới nhất về cuộc thi nha. Các bạn hãy giúp đỡ chúng mình phát triển cuộc thi :>

Cuộc thi Toán Tiếng Anh VEMC | Facebook

Nếu bạn muốn đề xuất câu hỏi xuất hiện trong chuyên mục này các bạn hãy gửi qua form để nhận được sự ưu tiên giúp đỡ đến từ cộng đồng :> Chuyên mục đang cần câu hỏi hay, mong các bạn ủng hộ :>

[Tiền sự kiện 1] Thử sức trí tuệ - Google Biểu mẫu

-------------------------------------------------------------------

[Toán.C27 _ 22.1.2021]

Người biên soạn câu hỏi: Võ Phan Phương Ngọc

Cho đường tròn (O) và điểm P nằm trong đường tròn  P không trùng với O). Xác định vị trí của dây đi qua điểm P sao cho dây đó có độ dài nhỏ nhất.

[Toán.C28 _ 22.1.2021]

Người biên soạn câu hỏi: Trung Chanh Trinh

Trích Đề thi HSG Toán 9, tỉnh Quảng Bình, 2020-2021:

Cho a,b,c là các số thực dương thỏa mãn \(\sqrt{a}+\sqrt{b}+\sqrt{c}=2\).

Chứng minh: \(\dfrac{a+b}{\sqrt{a}+\sqrt{b}}+\dfrac{b+c}{\sqrt{b}+\sqrt{c}}+\dfrac{c+a}{\sqrt{c}+\sqrt{a}}\le4\left[\dfrac{\left(\sqrt{a}-1\right)^2}{\sqrt{b}}+\dfrac{\left(\sqrt{b}-1\right)^2}{\sqrt{c}}+\dfrac{\left(\sqrt{c}-1\right)^2}{\sqrt{a}}\right]\)

Bánh Đậu Xanh
Hôm kia lúc 15:39

Cái này thi Tiếng Anh có giải không ạ

Bình luận (0)

C27.Gọi AB là dây vuông góc với OP tại P , và dây CD là dây bất kỳ đi qua P vàkhông trùng với AB .

 

Kẻ \(OH\perp CD\)

 

\(\Delta OHP\) vuông tại H\(\Rightarrow\) OH < OP \(\Rightarrow\) CD > AB

 

Như vậy trong tất cả các dây đi qua P , dây vuông góc với OP tại P có độ dài nhỏ nhất.

Bình luận (1)
tthnew
Thiếu tá -
Hôm kia lúc 7:23

C28 để em cho.

Đặt \(\left(\sqrt{a},\sqrt{b},\sqrt{c}\right)\rightarrow\left(x,y,z\right);\left(x,y,z>0\right)\) thì \(x+y+z=2.\)

Cần chứng minh: \(\sum\dfrac{x^2+y^2}{x+y}\le4\left[\sum\dfrac{\left(x-1\right)^2}{x}\right]\)

Ta sẽ chứng minh theo hướng: \(VT\le\dfrac{3\left(x^2+y^2+z^2\right)}{x+y+z}\le\sum\dfrac{\left(y+z-x\right)^2}{x}=VP\)

Rõ ràng bất đẳng thức bên trái là quen thuộc.

Ta chỉ cần chứng minh:

\(\sum\dfrac{\left(y+z-x\right)^2}{x}\ge\dfrac{3\left(x^2+y^2+z^2\right)}{x+y+z}\quad\left(1\right)\)

Áp dụng bất đẳng thức Cauchy-Schwarz ta có:

\(VT_{\left(1\right)}\ge\dfrac{\left[\sum\left(y+z-x\right)\left(y+z\right)\right]^2}{\sum x\left(y+z\right)^2}\ge\dfrac{3\left(x^2+y^2+z^2\right)}{x+y+z}\)

Bất đẳng thức cuối tương đương:

\({\dfrac { \left( {x}^{2}+{y}^{2}+{z}^{2} \right) \left( 4\,{x}^{3}+{x} ^{2}y+{x}^{2}z+x{y}^{2}-18\,xyz+x{z}^{2}+4\,{y}^{3}+{y}^{2}z+y{z}^{2}+ 4\,{z}^{3} \right) }{ \left( {x}^{2}y+{x}^{2}z+x{y}^{2}+6\,xyz+x{z}^{2 }+{y}^{2}z+y{z}^{2} \right) \left( x+y+z \right) }}\geq 0, \)

Hiển nhiên theo AM-GM.

Đẳng thức xảy ra khi $x=y=z$ hay $\cdots$

Bình luận (1)
Đỗ Quyên
Đại úy -
22 tháng 1 lúc 16:08

Các bạn trả lời tích cực nhé giáo viên Toán của Hoc24 sẽ nhận xét và cộng GP cho các em ^^

Bình luận (0)
Quoc Tran Anh Le

Like và follow fanpage để cập nhật những tin tức mới nhất về cuộc thi nha. Các bạn hãy giúp đỡ chúng mình phát triển cuộc thi :>

Cuộc thi Toán Tiếng Anh VEMC | Facebook

Nếu bạn muốn đề xuất câu hỏi xuất hiện trong chuyên mục này các bạn hãy gửi qua form để nhận được sự ưu tiên giúp đỡ đến từ cộng đồng :> Chuyên mục đang cần câu hỏi hay, mong các bạn ủng hộ :>

[Tiền sự kiện 1] Thử sức trí tuệ - Google Biểu mẫu

-------------------------------------------------------------------

[Toán.C22 _ 21.1.2021]

Cho tam giác ABC không tù. Chứng minh rằng:

\(\dfrac{sinB.sinC}{sinA}+\dfrac{sinC.sinA}{sinB}+\dfrac{sinA.sinB}{sinC}\ge\dfrac{5}{2}\)

[Toán.C23 _ 21.1.2021]

Trích Vietnam TST, 2001: Cho a,b,c > 0 và 21ab + 2bc + 8ca \(\le12\). Tìm giá trị nhỏ nhất của biểu thức \(P=\dfrac{1}{a}+\dfrac{2}{b}+\dfrac{3}{c}\).

[Toán.C24 _ 21.1.2021]

Trích VEMC, 2018

Hai nhà toán học người Nga gặp nhau trên một chuyến bay.

"Nếu tôi nhớ không nhầm thì ông có ba cậu con trai," nhà toán học tên là Ivan nói. "Đến nay chúng bao nhiêu tuổi rồi?"

"Tích số tuổi của chúng là 36," nhà toán học tên là Igor đáp, "và tổng số tuổi của chúng đúng bằng ngày hôm nay."

"Tôi xin lỗi," Ivan nói sau một phút suy nghĩ, "nhưng từ những thông tin đó tôi vẫn không thể biết được tuổi của chúng."

"À tôi quên không kể cho ông, đứa con nhỏ tuổi nhất của tôi có mái tóc màu đỏ."

"A, giờ thì rõ rồi," Ivan nói. "Giờ tôi đã biết chính xác ba cậu con trai của ông bao nhiêu tuổi."

Làm sao mà Ivan biết được?

[Toán.C25 _ 21.1.2021]

Một chuyên gia về xác suất nhờ một người tung đồng xu 200 lần rồi ghi lại kết quả. Khi người đó đưa kết quả cho anh ta, vừa nhìn một cái đã biết người kia bịa ra chứ không phải thật sự tung cả ngần ấy lần. Bạn có biết anh ta làm thế nào không?

Hồng Phúc
Thiếu tá -
21 tháng 1 lúc 16:54

[Toán.C23 _ 21.1.2021]

Đặt \(a=\dfrac{1}{x};b=\dfrac{1}{y};c=\dfrac{1}{z}\)

Giả thiết trở thành \(2x+9y+21z\le12xyz\)

\(\Leftrightarrow3z\ge\dfrac{2x+8y}{4xy-7}\)

Áp dụng BĐT Cosi và BĐT BSC:

Khi đó \(P=x+2y+3z\)

\(\ge x+2y+\dfrac{2x+8y}{4xy-7}\)

\(=x+\dfrac{11}{2x}+\dfrac{1}{2x}\left(4xy-7+\dfrac{4x^2+28}{4xy-7}\right)\)

\(\ge x+\dfrac{11}{2x}+\dfrac{1}{x}\sqrt{4x^2+28}\)

\(=x+\dfrac{11}{2x}+\dfrac{3}{2}\sqrt{\left(1+\dfrac{7}{9}\right)\left(1+\dfrac{7}{x^2}\right)}\)

\(\ge x+\dfrac{11}{2x}+\dfrac{3}{2}\left(1+\dfrac{7}{3x}\right)\)

\(\ge x+\dfrac{9}{x}+\dfrac{3}{2}\ge\dfrac{15}{2}\)

\(\Rightarrow minP=\dfrac{15}{2}\Leftrightarrow a=\dfrac{1}{3};b=\dfrac{4}{5};c=\dfrac{3}{2}\)

Mấy câu có thêm dòng trích từ mấy đề quốc gia, quốc tế gì gì đó đâm ra nản luôn.

Bình luận (3)
Sigma
Trung tá -
21 tháng 1 lúc 18:31

C23 cách khác: Điểm rơi \(a=\dfrac{1}{3};b=\dfrac{4}{5};c=\dfrac{3}{2}\) nên ta đặt \(a=\dfrac{1}{3}x;b=\dfrac{4}{5}y;c=\dfrac{3}{2}z\).

Ta có \(21ab+2bc+8ca\le12\Leftrightarrow\dfrac{28}{5}xy+\dfrac{12}{5}yz+4zx\le12\Leftrightarrow7xy+3yz+5zx\le15\).

Áp dụng bất đẳng thức AM - GM: \(15\ge7ab+3bc+5ca\ge15\sqrt[15]{\left(xy\right)^7.\left(yz\right)^3.\left(zx\right)^5}=15\sqrt[15]{x^{12}y^{10}z^8}\)

\(\Rightarrow x^6y^5z^4\le1\);

\(P=\dfrac{1}{a}+\dfrac{2}{b}+\dfrac{3}{c}=3x+\dfrac{5}{2}y+2z=\dfrac{1}{2}\left(\dfrac{6}{x}+\dfrac{5}{y}+\dfrac{4}{z}\right)\ge\dfrac{1}{2}.15\sqrt[15]{\left(\dfrac{1}{x}\right)^6.\left(\dfrac{1}{y}\right)^5.\left(\dfrac{1}{z}\right)^4}=\dfrac{15}{2}.\sqrt[15]{\dfrac{1}{x^6y^5z^4}}\ge\dfrac{15}{2}\).

Đẳng thức xảy ra khi \(x=y=z=1\) tức \(a=\dfrac{1}{3};b=\dfrac{4}{5};c=\dfrac{3}{2}\).Vậy Min P = \(\dfrac{15}{2}\) khi \(a=\dfrac{1}{3};b=\dfrac{4}{5};c=\dfrac{3}{2}\).

P/s: Lời giải nhìn có vẻ đơn giản nhưng muốn tìm điểm rơi thì phải dùng bđt AM - GM suy rộng.

 

 

Bình luận (7)
tthnew
Thiếu tá -
21 tháng 1 lúc 19:17

Giả sử $P$ đạt Min tại $a=x,b=y,c=z.$ Khi đó: \(\dfrac{a}{x}=\dfrac{b}{y}=\dfrac{c}{z}=1\)\(21xy+2yz+8zx=12\) $(\ast)$

Ta có:\(12=21ab+2bc+8ca=21xy.\left(\dfrac{ab}{xy}\right)+2yz\cdot\left(\dfrac{bc}{yz}\right)+8zx\cdot\left(\dfrac{ca}{zx}\right)\)

\(\ge\left(21xy+2yz+8zx\right)\sqrt[\left(21xy+2yz+8zx\right)]{\left(\dfrac{ab}{xy}\right)^{21xy}\cdot\left(\dfrac{bc}{yz}\right)^{2yz}\cdot\left(\dfrac{ca}{zx}\right)^{8zx}}\quad\)   

\(=\left(21xy+2yz+8zx\right)\sqrt[\left(21xy+2yz+8zx\right)]{\left(\dfrac{a}{x}\right)^{21xy+8zx}\cdot\left(\dfrac{b}{y}\right)^{21xy+2yz}\cdot\left(\dfrac{c}{z}\right)^{2yz+8zx}}\quad\left(1\right)\quad\)

Lại có:

\(P=\dfrac{1}{a}+\dfrac{2}{b}+\dfrac{3}{c}=\dfrac{1}{x}\cdot\dfrac{x}{a}+\dfrac{2}{y}\cdot\dfrac{y}{b}+\dfrac{3}{z}\cdot\dfrac{z}{c}\)

\(\ge\left(\dfrac{1}{x}+\dfrac{2}{y}+\dfrac{3}{z}\right)\sqrt[\left(\dfrac{1}{x}+\dfrac{2}{y}+\dfrac{3}{z}\right)]{\left(\dfrac{x}{a}\right)^{\dfrac{1}{x}}\cdot\left(\dfrac{y}{b}\right)^{\dfrac{2}{y}}\cdot\left(\dfrac{z}{x}\right)^{\dfrac{3}{z}}}\quad\left(2\right)\)

\(=\left(21xy+2yz+8zx\right)\sqrt[\left(21xy+2yz+8zx\right)]{\left(\dfrac{a}{x}\right)^{21xy+8zx}\cdot\left(\dfrac{b}{y}\right)^{21xy+2yz}\cdot\left(\dfrac{c}{z}\right)^{2yz+8zx}}\quad\left(1\right)\quad\)

Từ $(1)$ và $(2)$ rõ ràng cần chọn $x,y,z$ sao cho:

\(\dfrac{{\left( {21{\mkern 1mu} xy + 8{\mkern 1mu} zx} \right)}}{{\dfrac{1}{x}}} = {\mkern 1mu} \dfrac{{\left( {21{\mkern 1mu} xy + 2{\mkern 1mu} yz} \right)}}{{\dfrac{2}{y}}} = \dfrac{{\left( {2yz + 8zx} \right)}}{{\dfrac{3}{z}}}\)

Suy ra \(x={\dfrac {5\,y}{12}},y=y,z={\dfrac {15\,y}{8}} \) thế ngược lại $(\ast)$ ta được $x=\dfrac{1}{3};y=\dfrac{4}{5};z=\dfrac{3}{2}$ từ đây dẫn đến lời giải của bạn Tan Thuy Hoang.

Lời giải tuy ngắn nhưng rất kỳ công:D

 

Bình luận (7)
Quoc Tran Anh Le

Like và follow fanpage để cập nhật những tin tức mới nhất về cuộc thi nha :>

Cuộc thi Toán Tiếng Anh VEMC | Facebook

Nếu bạn muốn đề xuất câu hỏi xuất hiện trong chuyên mục này các bạn hãy gửi qua form để nhận được sự ưu tiên giúp đỡ đến từ cộng đồng :>

[Tiền sự kiện 1] Thử sức trí tuệ - Google Biểu mẫu

-------------------------------------------------------------------

[Toán.C16 _ 19.1.2021]

Người biên soạn câu hỏi: Lê Hà Vy

Trích Vietnam TST, 1996: Chứng minh rằng với x,y,z là các số thực bất kì ta có bất đẳng thức:

\(6\left(x+y+z\right)\left(x^2+y^2+z^2\right)\le27xyz+10\left(x^2+y^2+z^2\right)^{\dfrac{3}{2}}\).

[Toán.C17 _ 19.1.2021]

Người biên soạn câu hỏi: Lê Hà Vy

Trích IMO, 1983: Chứng minh rằng nếu a,b,c là ba cạnh của một tam giác thì:

\(a^2b\left(a-b\right)+b^2c\left(b-c\right)+c^2a\left(c-a\right)\ge0\).

[Toán.C18 _ 19.1.2021]

Người biên soạn câu hỏi: Nguyễn Bình An

Trích IMO, 2001: Cho a,b,c > 0. Chứng minh rằng:

\(\dfrac{a}{\sqrt{a^2+8bc}}+\dfrac{b}{\sqrt{b^2+8ac}}+\dfrac{c}{\sqrt{c^2+8ab}}\ge1.\)

[Toán.C19 _ 19.1.2021]

Người biên soạn câu hỏi: Quoc Tran Anh Le

Trích Vasile Cirtoaje: Cho a,b,c,d lớn hơn hoặc bằng 0 thỏa mãn a + b + c + d = 4. Chứng minh rằng:

\(16+2abcd\ge3\left(ab+ac+ad+bc+bd+cd\right)\).

*4 câu hỏi này xin được tặng các bạn một chút GP khi các bạn giải được hoàn hảo. Mong các thầy cô sẽ trao giải cho các bạn!

Hồng Phúc
Thiếu tá -
19 tháng 1 lúc 18:46

[Toán.C17_19.1.2021]

Gọi x, y, z là các số nguyên dương thỏa mãn \(a=x+y;b=y+z;c=z+x\)

Khi đó: \(a^2b\left(a-b\right)+b^2c\left(b-c\right)+c^2a\left(c-a\right)\ge0\left(1\right)\)

\(\Leftrightarrow\left(x+y\right)^2\left(y+z\right)\left(x-z\right)+\left(y+z\right)^2\left(z+x\right)\left(y-x\right)+\left(z+x\right)^2\left(x+y\right)\left(z-y\right)\ge0\)

\(\Leftrightarrow x^3z+y^3x+z^3y\ge x^2yz+xy^2z+xyz^2\)

\(\Leftrightarrow\dfrac{x^2}{y}+\dfrac{y^2}{z}+\dfrac{z^2}{x}\ge x+y+z\left(2\right)\)

Áp dụng BĐT BSC:

\(\dfrac{x^2}{y}+\dfrac{y^2}{z}+\dfrac{z^2}{x}\ge\dfrac{\left(x+y+z\right)^2}{x+y+z}=x+y+z\)

\(\Rightarrow\left(2\right)\) đúng \(\Rightarrow\left(1\right)\) đúng

Bình luận (1)
tthnew
Thiếu tá -
20 tháng 1 lúc 20:01

VietNam TST, 1996.

Chuẩn hóa \(x^2+y^2+z^2=1.\) Cần chứng minh:

\(6\left(x+y+z\right)\le27xyz+10\)

Ta có: \(1=x^2+y^2+z^2\ge3\sqrt[3]{x^2y^2z^2}\Rightarrow x^2y^2z^2\le\dfrac{1}{27}\Rightarrow-\dfrac{\sqrt{3}}{9}\le xyz\le\dfrac{\sqrt{3}}{9}\)

Do đó: \(VP\ge27\cdot\left(-\dfrac{\sqrt{3}}{9}\right)+10=10-3\sqrt{3}>0.\)

Nếu $x+y+z<0$ thì $VP>0>VT$ nên ta chỉ xét khi $x+y+z\geq 0.$

Đặt $\sqrt{3}\geq p=x+y+z>0;q=xy+yz+zx,r=xyz.$

Bất đẳng thức cần chứng minh tương đương với:\(6p\le27r+10\quad\left(1\right)\)

Mà \(x^2+y^2+z^2=1\Leftrightarrow p^2-2q=1\Rightarrow q=\dfrac{\left(p^2-1\right)}{2}\quad\left(2\right)\)

Ta có: $$(x-y)^2(y-z)^2(z-x)^2\geq 0.$$

Chuyển sang \(\textit{pqr}\) và kết hợp với $(2)$ suy ra \({\dfrac {5\,{p}^{3}}{54}}-\dfrac{p}{6}-{\dfrac {\sqrt {2 \left(3- {p}^{2} \right) ^{3}}}{54}}\leq r \)

Từ đây thay vào $(1)$ cần chứng minh:

$$\dfrac{5}{2}p^3-\dfrac{21}{2}p+10\geqslant \dfrac{1}{2}\sqrt{2\left(3-p^2\right)^3}$$

Hay là $$\dfrac{1}{4} \left( 27\,{p}^{4}+54\,{p}^{3}-147\,{p}^{2}-148\,p+346 \right) \left( p-1 \right) ^{2}\geqslant 0.$$

Đây là điều hiển nhiên.

Bình luận (2)
tthnew
Thiếu tá -
20 tháng 1 lúc 19:45

Câu đầu tiên hình không phải VietNam TST 1996 đâu anh. Bất đẳng thức VietNam TST 1996 là:

$$(a+b)^4+(b+c)^4+(c+a)^4\geqslant \dfrac{4}{7}\left(a^4+b^4+c^4\right)$$

 

Bình luận (3)
Quoc Tran Anh Le

Like và follow fanpage để cập nhật những tin tức mới nhất về cuộc thi nha :>

Cuộc thi Toán Tiếng Anh VEMC | Facebook

Nếu bạn muốn đề xuất câu hỏi xuất hiện trong chuyên mục này các bạn hãy gửi qua form: 

[Tiền sự kiện 1] Thử sức trí tuệ - Google Biểu mẫu

Những câu hỏi được chọn sẽ khả năng cao trở thành những bài đặc biệt được Cộng đồng lưu ý giải và thảo luận. Những bài toán chưa được duyệt nhưng các bạn chưa có lời giải, các bạn hãy gửi trực tiếp câu hỏi lên Hoc24 nhé!

-------------------------------------------------------------------

[Toán.C13 _ 17.1.2021]

Người biên soạn câu hỏi: Nguyễn Trúc Giang

Cho hình bình hành ABCD có M, N, P, Q là trung điểm của AB, BC, CD, AD. Biết diện tích ABC = 60 m2. Tính diện tích MNPQ (Giải bằng nhiều cách).

[Toán.C14 _ 17.1.2021]

Người biên soạn câu hỏi: Nguyễn Trọng Chiến

Tìm tất cả các số nguyên dương N có 2 chữ số sao cho tổng tất cả các chữ số của số \(10^N-N\) chia hết cho 170.

Sigma
Trung tá -
17 tháng 1 lúc 8:33

Câu 4b:

Ta có \(a-\sqrt{a}=\sqrt{b}-b\Leftrightarrow a+b=\sqrt{a}+\sqrt{b}\). (1)

Áp dụng bất đẳng thức Cauchy - Schwarz ta có:

\(a^2+b^2\ge\dfrac{\left(a+b\right)^2}{2};\sqrt{a}+\sqrt{b}\le\sqrt{2\left(a+b\right)}\).

Kết hợp với (1) ta có:

\(a+b\le\sqrt{2\left(a+b\right)}\Leftrightarrow0\le a+b\le2\).

Ta có: \(P\ge\dfrac{\left(a+b\right)^2}{2}+\dfrac{2020}{\left(\sqrt{a}+\sqrt{b}\right)^2}\) (Do \(a^2+b^2\ge\dfrac{\left(a+b\right)^2}{2}\))

\(=\dfrac{\left(a+b\right)^2}{2}+\dfrac{2020}{\left(a+b\right)^2}\) (Theo (1))

\(\Rightarrow P\ge\dfrac{\left(a+b\right)^2}{2}+\dfrac{2020}{\left(a+b\right)^2}\).

Áp dụng bất đẳng thức AM - GM cho hai số thực dương và kết hợp với \(a+b\le2\) ta có:

\(\dfrac{\left(a+b\right)^2}{2}+\dfrac{2020}{\left(a+b\right)^2}=\left[\dfrac{\left(a+b\right)^2}{2}+\dfrac{8}{\left(a+b\right)^2}\right]+\dfrac{2012}{\left(a+b\right)^2}\ge2\sqrt{\dfrac{\left(a+b\right)^2}{2}.\dfrac{8}{\left(a+b\right)^2}}+\dfrac{2012}{2^2}=4+503=507\)

\(\Rightarrow P\ge507\).

Đẳng thức xảy ra khi a = b = 1.

Vậy Min P = 507 khi a = b = 1.

 

Bình luận (0)
Sigma
Trung tá -
17 tháng 1 lúc 8:47

Giải nốt câu 4a:

ĐKXĐ: \(x\geq\frac{-1}{2}\).

Phương trình đã cho tương đương:

\(x^2+2x+1=2x+1+2\sqrt{2x+1}+1\)

\(\Leftrightarrow\left(x+1\right)^2=\left(\sqrt{2x+1}+1\right)^2\)

\(\Leftrightarrow\left(x+1\right)^2-\left(\sqrt{2x+1}+1\right)^2=0\)

\(\Leftrightarrow\left(x+1-\sqrt{2x+1}-1\right)\left(x+1+\sqrt{2x+1}+1\right)=0\)

\(\Leftrightarrow\left(x-\sqrt{2x+1}\right)\left(x+\sqrt{2x+1}+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-\sqrt{2x+1}=0\left(1\right)\\x+\sqrt{2x+1}+2=0\left(2\right)\end{matrix}\right.\).

Ta thấy \(x+\sqrt{2x+1}+2>0\forall x\ge-\dfrac{1}{2}\).

Do đó phương trình (2) vô nghiệm.

Xét phương trình (1) \(\Leftrightarrow x=\sqrt{2x+1}\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\x^2=2x+1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\\left(x-1\right)^2=2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\\left[{}\begin{matrix}x-1=\sqrt{2}\\x-1=-\sqrt{2}\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\\left[{}\begin{matrix}x=\sqrt{2}+1>0>-\dfrac{1}{2}\left(TM\right)\\x=-\sqrt{2}+1< 0\left(\text{loại}\right)\end{matrix}\right.\end{matrix}\right.\).

Vậy nghiệm của phương trình là \(x=\sqrt{2}+1\).

Bình luận (0)
Hồng Phúc
Thiếu tá -
17 tháng 1 lúc 8:48

4.

a, ĐK: \(x\ge-\dfrac{1}{2}\)

\(x^2-1=2\sqrt{2x+1}\)

\(\Leftrightarrow x^2+2x+1=2x+1+2\sqrt{2x+1}+1\)

\(\Leftrightarrow\left(x+1\right)^2=\left(\sqrt{2x+1}+1\right)^2\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{2x+1}+1=x+1\\\sqrt{2x+1}+1=-x-1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{2x+1}=x\\\sqrt{2x+1}=-x-2\end{matrix}\right.\)

Vì \(x\ge-\dfrac{1}{2}\Rightarrow-x-2\le\dfrac{1}{2}-2< 0\)

Nên \(\sqrt{2x+1}=x\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\2x+1=x^2\end{matrix}\right.\)

\(\Leftrightarrow x=1+\sqrt{2}\left(tm\right)\)

Vậy phương trình đã cho có nghiệm \(x=1+\sqrt{2}\)

Bình luận (0)

Khoá học trên OLM của Đại học Sư phạm HN