Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Đạt Trần Tiến
Xem chi tiết
may vaicaidyt
20 tháng 12 2017 lúc 18:33

Để phương trình có ít nhất một nghiệm thì:

\(\Delta=\left(2p-1\right)^2-4\cdot3\cdot\left(p^2-6p+11\right)\ge0\)

=\(-8p^2+68p-131\) (1)

Giải pt (1) ta được:

\(p=\dfrac{17\pm3\sqrt{3}}{4}\)

chúc bạn học tốt!!!

Ngô Anh Tú
12 tháng 1 2018 lúc 21:49

bố tổ oeoebucqua

Đạt Trần Tiến
Xem chi tiết
Hạ Mộc
18 tháng 1 2018 lúc 20:41

Theo định lý vi-et ta có:

\(\left\{{}\begin{matrix}xy=a+b\\x+y=ab\end{matrix}\right.\) (với x,y à nghiệm của phương trình)

Giả sử ab>xy

Suy ra x+y>xy suy ra x.(1-y)+y-1>-1 suy ra (x-1)(y-1)<1 suy ra x=1 hoặc y=1

Suy ra 1-ab+a+b=0(vì tổng các hệ số =0) suy ra a=(1+b)/(b-1) ( đến đoạn này là ok)

Giả sử xy>ab Suy ra a+b>ab suy ra a=1 hoặc b=1

Với a=1 suy ra điều kiện để pt có nghiêm nguyên là: b^2 − 4(1+b) = k^2 ⇒ (b−2−k).(b−2+k) = 8(đến đoạn này ok)

Trường hợp còn lại CM tương tự

Unruly Kid
Xem chi tiết
Neet
15 tháng 12 2017 lúc 0:30

Bài 2: Restore : a;b;c không âm thỏa \(a^2+b^2+c^2=1\)

Tìm Min & Max của \(M=\left(a+b+c\right)^3+a\left(2bc-1\right)+b\left(2ac-1\right)+c\left(2ab-1\right)\)

Bài 4: Tương đương giống hôm nọ thôi : V

Bài 5 : Thiếu ĐK thì vứt luôn : V

Bài 7: Tương đương

( Hoặc có thể AM-GM khử căn , sau đó đổi \(\left(a;b;c\right)\rightarrow\left(\dfrac{x}{y};\dfrac{y}{z};\dfrac{z}{x}\right)\) rồi áp dụng bổ đề vasile)

Bài 8 : Đây là 1 dạng của BĐT hoán vị

Unruly Kid
12 tháng 12 2017 lúc 14:35

@Ace Legona @Akai Haruma @Hung nguyen @Hà Nam Phan Đình @Neet

Hung nguyen
12 tháng 12 2017 lúc 16:14

1/ Không mất tính tổng quát giả sử: \(x\ge y\ge z>0\)

\(\Rightarrow15=x+y+z\ge3z\)

\(\Leftrightarrow1\le z\le5\)

Làm nốt nhé.

vung nguyen thi
Xem chi tiết
Akai Haruma
13 tháng 6 2018 lúc 18:22

Lời giải:

Đặt \((a,b,c)=(m+4,n+5,p+6)\Rightarrow m,n,p\geq 0\)

Điều kiện đb trở thành:

\(a^2+b^2+c^2=90\Leftrightarrow m^2+n^2+p^2+8m+10n+12p=13\)

\(m,n,p\geq 0\) nên:

\(13=m^2+n^2+p^2+8m+10n+12p\leq (m+n+p)^2+12(m+n+p)\)

\(\Leftrightarrow (m+n+p+13)(m+n+p-1)\geq 0\)

\(\Rightarrow m+n+p\geq 1\)

\(\Rightarrow a+b+c=m+n+p+15\geq 16\)

Ta có đpcm

Dấu bằng xảy ra khi \((a,b,c)=(4,5,7)\)

Nguyễn Anh Khoa
Xem chi tiết
Trần Thuyên
1 tháng 2 2018 lúc 20:16

\(DK:x>=0\)

\(Đat:t=\sqrt{2x+1}+\sqrt{x}\left(t>=0\right)\)

\(\Leftrightarrow t^2=3x+1+2\sqrt{2x^2+x}\)

\(\Leftrightarrow\dfrac{4}{3}\sqrt{2x^2+x}=\dfrac{2}{3}t^2-2x-\dfrac{2}{3}\)

Phương Trình đề bài \(\Leftrightarrow t-2x+11=\dfrac{2}{3}t^2-2x-\dfrac{2}{3}\)

\(\Leftrightarrow2t^2-3t-35=0\)

\(\Leftrightarrow\left[{}\begin{matrix}t=5\left(N\right)\\t=-\dfrac{7}{2}\left(L\right)\end{matrix}\right.\)

Thay t=5 vào chỗ đặt ý rồi giải phương trình tìm x . Kết luận

Lightning Farron
Xem chi tiết
Akai Haruma
18 tháng 11 2017 lúc 1:07

Bài này rất dài dòng nhưng cũng rất quen.

https://diendantoanhoc.net/topic/153766-bổ-đề-hoán-vị/

Lightning Farron
20 tháng 11 2017 lúc 0:52

Bích Ngọc Huỳnh & erone - anotherway

Ta sẽ tìm hàm số \(f\left(q\right)\) sao cho
\(\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}\ge f(q) \forall a,b,c>0.\)

\(\Leftrightarrow \sum \dfrac{a}{b}+\sum \dfrac{b}{a}\ge 2f(q)+\sum \dfrac{b}{a}-\sum \dfrac{a}{b} \)

Or \(\sum ab(a+b)-2abc\cdot f(q)\ge (a-b)(b-c)(c-a)\)

Need to pro \(\sum ab(a+b)-2abc\cdot f(q)\ge \sqrt{(a-b)^2(b-c)^2(c-a)^2}.\)

Đặt \(p=a+b+c,q=ab+bc+ca,r=abc\)

\((pq-3r)-2f(q)\cdot r \ge \sqrt{p^2q^2+18pqr-27r^2-4q^3-4p^3r}\)

\(p=1 \) have; \((q-3r)-2f(q)\cdot r \ge \sqrt{q^2+18qr-27r^2-4q^3-4r}\)

\(\Leftrightarrow\)\((27+k^2)r^2+2(2-kq-9q)r+4q^3 \ge 0\)

\(\Delta_r ‘=(2-kq-9q)^2-4q^3(27+k^2) \)

\(=q^2(1-4q)k^2+2q(9q-2)k+(9q-2)^2-108q^3\)

Cho\(\Delta_r ‘=0 \) tìm dc \(k=\dfrac{2-9q\pm 4\sqrt{q(1-3q)^3}}{q(1-4q)}.\)

Ta chọn \(k=\dfrac{2-9q+ 4\sqrt{q(1-3q)^3}}{q(1-4q)}\). do đó \(f(q)=\dfrac{k-3}{2}=\dfrac{1-6q+6q^2+ 2\sqrt{q(1-3q)^3}}{q(1-4q)}\)

Suy ra

\( 1-6q+6q^2+ 2\sqrt{q(1-3q)^3}=\left[2\sqrt{q(1-3q)^3}-2(9q^2-2q)\right]+(24q^2-10q+1)\\ \)

\(=2\cdot \dfrac{q(1-3q)^3-(9q^2-2q)^2}{\sqrt{q(1-3q)^3}+2(9q^2-2q)}+(4q-1)(6q-1)\\ \)

\(=2\cdot \dfrac{q(1-4q)(27q^2-9q+1)}{\sqrt{q(1-3q)^3}+2(9q^2-2q)}+(4q-1)(6q-1)\)

Vậy \(f(q)=\dfrac{2(27q^2-9q+1)}{\sqrt{q(1-3q)^3}+2(9q^2-2q)}+\dfrac{1-6q}{q}\)

Tùng Sơn
Xem chi tiết
Nguyễn Huy Thắng
9 tháng 11 2017 lúc 17:10

pick and lock

Lightning Farron
9 tháng 11 2017 lúc 18:08

Ta có: \(A=2\left(x^3+y^3\right)-3xy=2\left(x+y\right)\left(x^2-xy+y^2\right)-3xy\)

Lại có: \(x^2+y^2=2\Leftrightarrow\left(x+y\right)^2-2xy=2\Leftrightarrow xy=\dfrac{\left(x+y\right)^2-2}{2}\)

\(\Rightarrow A=2\left(x+y\right)\left(2-\dfrac{\left(x+y\right)^2-2}{2}\right)-\dfrac{3\left(x+y\right)^2-2}{2}\)

Đặt \(t=x+y\Rightarrow\left|t\right|\le2\)\(A=-t^3-\dfrac{3}{2}t^2+6t+3\forall\left|t\right|\le2\)

\(\Rightarrow g'\left(t\right)=-3t^2-3t+6\)

\(g'\left(t\right)=0\Rightarrow-3t^2-3t+6=0\)

\(\Rightarrow\left(t-1\right)\left(t+2\right)=0\)\(\Rightarrow\left[{}\begin{matrix}t=1\\t=-2\end{matrix}\right.\)\(t\in\left[-2;2\right]\)

\(g\left(-2\right)=-7;g\left(2\right)=1;g\left(1\right)=\dfrac{13}{2}\)

Nhìn vào các số trên rõ ràng là \(A_{MAX}=\dfrac{13}{2}\Leftrightarrow x=\dfrac{1\pm\sqrt{3}}{2};y=\dfrac{1\mp\sqrt{3}}{2}\)

\(A_{Min}=-7\Leftrightarrow x=y=-1\)

Hà Nam Phan Đình
9 tháng 11 2017 lúc 18:48

GTLN:
áp dụng BĐT Cauchy-Swarch: \(\left(x^2+y^2\right)\left(1^2+1^2\right)\ge\left(x+y\right)^2\)

\(\Rightarrow x^2+y^2\ge\dfrac{\left(x+y\right)^2}{2}\)\(\Rightarrow\left(x+y\right)^2\le4\Rightarrow-2\le x+y\le2\)

ta có: \(A=2\left(x+y\right)\left(x^2-xy+y^2\right)-3xy=2\left(x+y\right)\left(2-xy\right)-3xy\)

\(x+y\le2\Rightarrow A\le4\left(2-xy\right)-3xy=8-7xy\)

\(x^2+y^2=2\Rightarrow\left(x+y\right)^2-2=2xy\Rightarrow\dfrac{7}{2}\left(x+y\right)^2-7=7xy\)

\(\Rightarrow-\dfrac{7}{2}\left(x+y\right)^2+7+8=8-7xy\)

\(\Rightarrow-\dfrac{7}{2}\left(x+y\right)^2+15=8-7xy\)

\(\Rightarrow A\le15-\dfrac{7}{2}\left(x+y\right)^2\le15\)

\(\Rightarrow MaxA=15\) khi \(\left[{}\begin{matrix}x=1;y=-1\\x=-1;y=1\end{matrix}\right.\)

Nguyễn Như Ý
Xem chi tiết
Hung nguyen
3 tháng 11 2017 lúc 9:30

\(\sqrt{x^2+x-1}-1+\sqrt{x-x^2+1}-1+x-x^2=0\)

\(\Leftrightarrow\dfrac{x^2+x-2}{\sqrt{x^2+x-1}+1}+\dfrac{x-x^2}{\sqrt{x-x^2+1}+1}+x-x^2=0\)

\(\Leftrightarrow\left(x-1\right)\left(\dfrac{x+2}{\sqrt{x^2+x-1}+1}-\dfrac{x}{\sqrt{x-x^2+1}+1}-x\right)=0\)

\(\Leftrightarrow x=1\)

Nguyễn Đặng Phương Anh
4 tháng 11 2017 lúc 19:03

Áp dụng BĐT: \(\sqrt{ab}\le\dfrac{a+b}{2}\)

Ta có: \(\sqrt{\left(x^2+x-1\right).1}+\sqrt{\left(x-x^2+1\right).1}\)

\(\le\dfrac{x^2+x-1+1}{2}+\dfrac{x-x^2+1+1}{2}=x+1\)\(\Rightarrow\)\(x^2-x+2\le x+1\Leftrightarrow\left(x-1\right)^2\le0\)

\(\Rightarrow x-1=0\Leftrightarrow x=1\)

Vậy ...

ngonhuminh
6 tháng 11 2017 lúc 23:05

\(\sqrt{x^2+x-1}+\sqrt{x-x^2+1}=x^2-x+2\)

dk: \(\left\{{}\begin{matrix}x^2+x-1\ge0\\1+x-x^2\ge0\end{matrix}\right.\)\(\Rightarrow\dfrac{\sqrt{5}-1}{2}\le x\le\dfrac{\sqrt{5}+1}{2}\)

\(\dfrac{\sqrt{5}-1}{2}>0\Rightarrow x>0\)

áp BĐT bunyacoxky c

\(\left(\sqrt{x^2+x-1}\right)^2+\left(\sqrt{x^2+x-1}\right)^2\ge\dfrac{\left(\sqrt{x^2+x-1}+\sqrt{x^2+x-1}\right)^2}{2}\)

\(\Leftrightarrow VT\le\sqrt{4x}=2\sqrt{x}\le x+1\) đẳng thức khi x =1

\(VP=x^2-x+2\ge x+1\)đẳng thức khi x =1

=> \(x=1\) là nghiệm duy nhất

nguyễn trang
Xem chi tiết
Hung nguyen
3 tháng 11 2017 lúc 10:01

Ta có \(\left\{{}\begin{matrix}BH\perp AC\\DC\perp AC\end{matrix}\right.\)

\(\Rightarrow\) BH // DC

Tương tự ta cũng có: CH // DB

\(\Rightarrow BHCD\) là hình bình hành.

Gọi I là trung điểm của BC

\(\Rightarrow\overrightarrow{OB}+\overrightarrow{OC}=2\overrightarrow{OI}\left(1\right)\)

Ta lại có OI là đường trung bình của \(\Delta ADH\)

\(\Rightarrow\overrightarrow{OI}=\dfrac{1}{2}\overrightarrow{AH}\left(2\right)\)

Từ (1) và (2)

\(\Rightarrow\overrightarrow{OB}+\overrightarrow{OC}=\overrightarrow{AH}\)

\(\Leftrightarrow\overrightarrow{OB}+\overrightarrow{OC}+\text{ }\overrightarrow{OA}=\text{ }\overrightarrow{OA}+\overrightarrow{AH}\)

\(\Leftrightarrow\text{ }\overrightarrow{OH}+\text{ }\overrightarrow{HA}+\text{ }\overrightarrow{OH}+\text{ }\overrightarrow{HB}+\text{ }\overrightarrow{OH}+\text{ }\overrightarrow{HC}=\text{ }\overrightarrow{OH}\)

\(\Leftrightarrow\text{ }\overrightarrow{HA}+\text{ }\overrightarrow{HB}+\text{ }\overrightarrow{HC}=2\text{ }\overrightarrow{HO}\)

Tài khoản bị khóa
16 tháng 11 2017 lúc 15:28

ta có:BB' là đường kính nên trong tam giác BB'C có góc C là góc vuông,tương tự góc A cũng vuông
ta lại có AH và B'C cùng vuông góc với BC
CH và B'A cùng vuông góc với AB
=>AHCB' là hình bình hành=>vectơ AH=vectơ B'C
bạn nên thêm mắm muối vào cho bài giải của mình.

nguyễn trang
2 tháng 11 2017 lúc 20:14

.

Lộc Tiến
Xem chi tiết