§1. Bất đẳng thức

Nguyễn Thanh
Xem chi tiết
TFBoys
22 tháng 6 2018 lúc 23:05

\(a+b+c=2\Rightarrow ab+bc+ca\le\dfrac{\left(a+b+c\right)^2}{3}=\dfrac{4}{3}\)

\(P=\dfrac{7+2b}{1+a}+\dfrac{7+2c}{1+b}+\dfrac{7+2a}{1+c}\)

\(\ge\dfrac{\left(21+2\left(a+b+c\right)\right)^2}{\left(1+a\right)\left(7+2b\right)+\left(1+b\right)\left(7+2c\right)+\left(1+c\right)\left(7+2a\right)}\)

\(=\dfrac{25^2}{21+9\left(a+b+c\right)+2\left(ab+bc+ca\right)}\ge\dfrac{25^2}{21+9.2+\dfrac{2.4}{3}}=15\)

\("="\Leftrightarrow a=b=c=\dfrac{2}{3}\)

Bình luận (0)
Hồ Thị Thúy Hằng
Xem chi tiết
Lightning Farron
25 tháng 3 2018 lúc 21:33

\(P=\sqrt{\dfrac{ab}{c+ab}}+\sqrt{\dfrac{bc}{a+bc}}+\sqrt{\dfrac{ca}{b+ca}}\)

\(=\sqrt{\dfrac{ab}{c\left(a+b+c\right)+ab}}+\sqrt{\dfrac{bc}{a\left(a+b+c\right)+bc}}+\sqrt{\dfrac{ca}{b\left(a+b+c\right)+ca}}\)

\(=\sqrt{\dfrac{ab}{\left(b+c\right)\left(c+a\right)}}+\sqrt{\dfrac{bc}{\left(a+b\right)\left(a+c\right)}}+\sqrt{\dfrac{ca}{\left(a+b\right)\left(b+c\right)}}\)

\(\le\dfrac{1}{2}\left(\dfrac{b}{b+c}+\dfrac{a}{a+c}+\dfrac{c}{a+c}+\dfrac{b}{a+b}+\dfrac{c}{b+c}+\dfrac{a}{a+b}\right)=\dfrac{1}{2}\)

\("=" \Leftrightarrow a=b=c=\frac{1}{3}\)

Bình luận (0)
Clgt
8 tháng 11 2019 lúc 14:13

§1. Bất đẳng thức

Bình luận (0)
 Khách vãng lai đã xóa
Lông_Xg
Xem chi tiết
Aki Tsuki
15 tháng 6 2018 lúc 13:43

Bài 1:

Ta có: \(\dfrac{a}{\sqrt{a^2+8bc}}+\dfrac{b}{\sqrt{b^2+8ac}}+\dfrac{c}{\sqrt{c^2+8ab}}=\dfrac{a^2}{a\sqrt{a^2+8bc}}+\dfrac{b^2}{b\sqrt{b^2+8ac}}+\dfrac{c^2}{c\sqrt{c^2+8ab}}\)

Áp dụng bđt Cauchy Schwarz có:

\(\dfrac{a^2}{a\sqrt{a^2+8bc}}+\dfrac{b^2}{b\sqrt{b^2+8ac}}+\dfrac{c^2}{c\sqrt{c^2+8ab}}\ge\dfrac{\left(a+b+c\right)^2}{a\sqrt{a^2+8bc}+b\sqrt{b^2+8bc}+c\sqrt{c^2+8bc}}\)

Lại sử dụng bđt Cauchy schwarz ta có:

\(a\sqrt{a^2+8bc}+b\sqrt{b^2+8ac}+c\sqrt{c^2+8ab}=\sqrt{a}\cdot\sqrt{a^3+8abc}+\sqrt{b}\cdot\sqrt{b^3+8abc}+\sqrt{c}\cdot\sqrt{c^3+8abc}\ge\sqrt{\left(a+b+c\right)\left(a^3+b^3+c^3+24abc\right)}\)

\(\Rightarrow\dfrac{a}{\sqrt{a^2+8bc}}+\dfrac{b}{\sqrt{b^2+8ac}}+\dfrac{c}{\sqrt{c^2+8ab}}\ge\dfrac{\left(a+b+c\right)^2}{\sqrt{\left(a+b+c\right)\left(a^3+b^3+c^3+24abc\right)}}=\sqrt{\dfrac{\left(a+b+c\right)^3}{a^3+b^3+c^3+24abc}}\)

=> Ta cần chứng minh: \(\left(a+b+c\right)^3\ge a^3+b^3+c^3+24abc\)

hay \(\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8abc\)

Áp dụng bđt Cosi ta có:

\(a+b\ge2\sqrt{ab};b+c\ge2\sqrt{bc};c+a\ge2\sqrt{ca}\)

Nhân các vế của 3 bđt trên ta đc:

\(\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge2\sqrt{ab}\cdot2\sqrt{bc}\cdot2\sqrt{ca}=8\sqrt{a^2b^2c^2}=8abc\)

=> Đpcm

Bình luận (0)
Lightning Farron
Xem chi tiết
Nguyễn Huy Thắng
13 tháng 6 2018 lúc 20:35

Một cái đề rất nắng...

Bình luận (2)
Almira
Xem chi tiết
Kuro Kazuya
17 tháng 9 2017 lúc 13:49

Áp dụng bất đẳng thức Cauchy dạng phân thức

\(\Rightarrow\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ac}\ge\dfrac{9}{ab+bc+ac}\)

\(\Rightarrow VT\ge\dfrac{1}{a^2+b^2+c^2}+\dfrac{9}{ab+bc+ac}\)

\(\Leftrightarrow VT\ge\dfrac{1}{a^2+b^2+c^2}+\dfrac{1}{ab+bc+ac}+\dfrac{1}{ab+bc+ac}+\dfrac{7}{ab+ac+bc}\)

Theo hệ quả của bất đẳng thức Cauchy

\(\Rightarrow ab+bc+ac\le\dfrac{1}{3}\left(a+b+c\right)^2=\dfrac{1}{3}\)

\(\Rightarrow\dfrac{7}{ab+bc+ac}\ge21\) (1)

Áp dụng bất đẳng thức Cauchy dạng phân thức

\(\Rightarrow\dfrac{1}{a^2+b^2+c^2}+\dfrac{1}{ab+bc+ac}+\dfrac{1}{ab+bc+ac}\ge\dfrac{9}{a^2+b^2+c^2+2\left(ab+bc+ac\right)}=9\) (2)

Từ (1) và (2)

\(\Rightarrow VT\ge21+9=30\) ( đpcm )

Dấu " = " xảy ra khi \(a=b=c=\dfrac{1}{3}\)

Bình luận (0)
Lông_Xg
Xem chi tiết
Akai Haruma
5 tháng 6 2018 lúc 23:48

Bài 1:

Biểu thức chỉ có giá trị lớn nhất, không có giá trị nhỏ nhất.

\(P=\frac{x}{x+1}+\frac{y}{y+1}+\frac{z}{z+1}=1-\frac{1}{x+1}+1-\frac{1}{y+1}+1-\frac{1}{z+1}\)

\(P=3-\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\right)\)

Giờ chỉ cần cho biến $x$ nhỏ vô cùng đến $0$, khi đó giá trị biểu thức trong ngoặc sẽ tiến đến dương vô cùng, khi đó P sẽ tiến đến nhỏ vô cùng, do đó không có min

Nếu chuyển tìm max thì em tìm như sau:

Áp dụng BĐT Cauchy_Schwarz:

\(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\geq \frac{(1+1+1)^2}{x+1+y+1+z+1}=\frac{9}{x+y+z+3}=\frac{9}{4}\)

Do đó: \(P=3-\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\right)\leq 3-\frac{9}{4}=\frac{3}{4}\)

Vậy \(P_{\min}=\frac{3}{4}\Leftrightarrow x=y=z=\frac{1}{3}\)

Bình luận (0)
Akai Haruma
5 tháng 6 2018 lúc 23:54

Bài 2:

Áp dụng BĐT Cauchy-Schwarz :

\(\frac{1}{a+3b+2c}=\frac{1}{9}\frac{9}{(a+c)+(b+c)+2b}\leq \frac{1}{9}\left(\frac{1}{a+c}+\frac{1}{b+c}+\frac{1}{2b}\right)\)

\(\Rightarrow \frac{ab}{a+3b+2c}\leq \frac{1}{9}\left(\frac{ab}{a+c}+\frac{ab}{b+c}+\frac{a}{2}\right)\)

Hoàn toàn tương tự:

\(\frac{bc}{b+3c+2a}\leq \frac{1}{9}\left(\frac{bc}{b+a}+\frac{bc}{c+a}+\frac{b}{2}\right)\)

\(\frac{ac}{c+3a+2b}\leq \frac{1}{9}\left(\frac{ac}{c+b}+\frac{ac}{a+b}+\frac{c}{2}\right)\)

Cộng theo vế:

\(\Rightarrow \text{VT}\leq \frac{1}{9}\left(\frac{b(a+c)}{a+c}+\frac{a(b+c)}{b+c}+\frac{c(a+b)}{a+b}+\frac{a+b+c}{2}\right)\)

hay \(\text{VT}\leq \frac{a+b+c}{6}\) (đpcm)

Dấu bằng xảy ra khi $a=b=c$

Bình luận (0)
Akai Haruma
5 tháng 6 2018 lúc 23:59

Bài 3:

Áp dụng BĐT AM-GM:

\(P=\frac{1}{a^2+2b^2+3}+\frac{1}{b^2+2c^2+3}+\frac{1}{c^2+2a^2+3}\)

\(P=\frac{1}{(a^2+b^2)+(b^2+1)+2}+\frac{1}{(b^2+c^2)+(c^2+1)+2}+\frac{1}{(c^2+a^2)+(a^2+1)+2}\)

\(\leq \frac{1}{2ab+2b+2}+\frac{1}{2bc+2c+1}+\frac{1}{ac+2a+2}\)

\(\Leftrightarrow P\leq \frac{1}{2}\left(\frac{1}{ab+b+1}+\frac{1}{bc+c+1}+\frac{1}{ac+a+1}\right)\)

Gọi biểu thức trong ngoặc lớn là $N$

Do $abc=1$ nên ta có:

\(N=\frac{ac}{ab.ac+b.ac+ac}+\frac{a}{bc.a+c.a+a}+\frac{1}{ac+a+1}\)

\(=\frac{ac}{a+1+ac}+\frac{a}{1+ca+a}+\frac{1}{ca+a+1}=\frac{ac+a+1}{ac+a+1}=1\)

DO đó: \(P\leq \frac{1}{2}N=\frac{1}{2}\)

Vậy \(P_{\max}=\frac{1}{2}\). Dấu bằng xảy ra khi $a=b=c=1$

Bình luận (0)
Thái Phan Trịnh Nam
Xem chi tiết
Ngô Tấn Đạt
5 tháng 6 2018 lúc 20:35

\(x^2+y^2+z^2\ge xy+yz+xz\\ \Leftrightarrow\left(x+y+z\right)^2\ge3\left(xy+yz+xz\right)\\ \Leftrightarrow xy+yz+xz\le\dfrac{\left(x+y+z\right)^2}{3}=\dfrac{1}{3}\)

dấu "=" xảy ra khi x=y=z=1/3

đề có sai ko ?

Bình luận (0)
Thái Phan Trịnh Nam
Xem chi tiết
Lightning Farron
3 tháng 6 2018 lúc 22:19

Áp dụng BĐT AM-GM ta có:

\(P=x+y+\dfrac{6}{x}+\dfrac{24}{y}\)

\(=x+\dfrac{4}{x}+y+\dfrac{16}{y}+\dfrac{2}{x}+\dfrac{8}{y}\)

\(\ge2\sqrt{x\cdot\dfrac{4}{x}}+2\sqrt{y\cdot\dfrac{16}{y}}+2\left(\dfrac{1}{x}+\dfrac{4}{y}\right)\)

\(\ge4+8+2\dfrac{\left(1+2\right)^2}{x+y}\ge15\)

Xảy ra khi \(x=2;y=4\)

Bình luận (0)
Đạt Trần Tiến
Xem chi tiết
 Mashiro Shiina
2 tháng 6 2018 lúc 1:22

min hay max bạn

Bình luận (0)
Nguyen
6 tháng 10 2019 lúc 16:04

Mk nghĩ là x3,y3,z3.

Áp dụng BĐT AM-GM:

\(\Sigma_{cyc}\left(\frac{x^2}{\sqrt{x^3+8}}\right)=\Sigma_{cyc}\left(\frac{x^2}{\sqrt{\left(x+2\right)\left(x^2-2x+4\right)}}\right)\)\(\ge2\Sigma_{cyc}\left(\frac{x^2}{x^2-x+6}\right)\)

Áp dụng BĐT Cauchy-Schwart:

\(2\frac{\left(x+y+z\right)^2}{x^2+y^2+z^2-\left(x+y+z\right)+18}\)\(=\frac{2\left(x+y+z\right)^2}{\left(x+y+z\right)^2-2\left(xy+yz+zx\right)-\left(x+y+z\right)+18}\)\(\ge\frac{2\left(x+y+z\right)^2}{\left(x+y+z\right)^2-2\left(x+y+z\right)-\left(x+y+z\right)+18}\)

gt\(\Leftrightarrow3\left(x+y+z\right)\le3\left(xy+yz+zx\right)\le\left(x+y+z\right)^2\)

\(\Leftrightarrow\left(x+y+z\right)^2-3\left(x+y+z\right)\ge0\)

\(\Rightarrow\left[{}\begin{matrix}x+y+z\le0\\x+y+z\ge3\end{matrix}\right.\)

Đặt t=x+y+z\(\left(t\ge3\right)\)

Cần c/m:\(\frac{2t^2}{t^2-3t+18}\ge1\)

Có :\(t^2-3t+18>0\)

\(\Rightarrow2t^2\ge t^2-3t+18\)

\(\Leftrightarrow t^2+3t-18\ge3^2+3.3-18=0\)(Đúng)

Vậy min =1

Dấu = xra khi x=y=z=1.

#Walker

Kiểm tra giùm em đúng ko ạ Akai Haruma

Bình luận (0)
Dgj Rrg
Xem chi tiết
Lê Văn Huy
10 tháng 6 2017 lúc 6:31

Áp dụng bđt côsi cho 3 số x,y,z không âm ta có:

\(\dfrac{x+y+z}{3}\ge\sqrt[3]{xyz}\)

\(x+y+z=2017\)

\(\Rightarrow\dfrac{2017}{3}\ge\sqrt[3]{xyz}\)

\(\Leftrightarrow xyz\le\left(\dfrac{2017}{3}\right)^3\Leftrightarrow xyz\le303916256\)

Dấu "=" xảy ra khi \(x=y=z=\dfrac{2017}{3}\)

Vậy giá trị max của \(P=303916256\\\) khi \(x=y=z=\dfrac{2017}{3}\)

Bình luận (0)
Lê Văn Huy
10 tháng 6 2017 lúc 6:35

bạn xem lại đề xem \(x,y,z\) là số tự nhiên hay \(x,y,z>0\)

nếu 3 số đó dương thì làm cách của mình. nếu là 3 số tự nhiên thì không làm cách đó được

Bình luận (0)
Neet
8 tháng 6 2018 lúc 9:20

Giả sử \(z=max\left\{x;y;z\right\}\)\(\Rightarrow z\ge673\)

Áp dụng AM-GM: \(xyz\le\dfrac{1}{4}\left(x+y\right)^2.z=\dfrac{1}{4}\left(2017-z\right)^2.z\)

Bằng nhiều cách , ta thấy hàm \(f\left(t\right)=\dfrac{1}{4}t\left(2017-t\right)^2\)nghịch biến trên nửa khoảng [673;\(+\infty\)) , do đó P đạt GTLN khi z=673

Bình luận (0)