Cm:
Nếu x,y,z >0 thỏa mãn
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=4\)
thì \(\frac{1}{2x+y+z}+\frac{1}{x+2y+z}+\frac{1}{x+y+2z}\le1\)
Bài 1:Cho x, y, z >0 thỏa mãn x+y+z=12.Tìm GTLN của biểu thức
\(M=\dfrac{2x+y+z-15}{x}+\dfrac{x+2y+z-15}{y}+\dfrac{x+y+2z-15}{z}\)
Bài 2:Cho a,b,c là số thực dương. Tìm GTNN của biểu thức
\(P=\dfrac{\left(a+b+c\right)^2}{30\left(a^2+b^2+c^2\right)}+\dfrac{a^3+b^3+c^3}{4abc}-\dfrac{131\left(a^2+b^2+c^2\right)}{60\left(ab+bc+ca\right)}\)
cho x,y,z > 0. Cmr: \(\frac{2x}{x^6+y^4}+\frac{2y}{y^6+z^4}+\frac{2z}{z^6+x^4}\le\frac{1}{x^4}+\frac{1}{y^4}+\frac{1}{z^4}\)
cho 3 số thực dương z;y;z thỏa mãn x+y+z<hoạc = 3/2
tìm GTNN của biểu thức :
\(P=\frac{z\left(xy+1\right)^2}{y^2\left(yz+1\right)}+\frac{x\left(yz+1\right)^2}{z^2\left(xz+1\right)}+\frac{y\left(xz+1\right)^2}{x^2\left(xy+1\right)}\)
Cho x,y,z >0 thỏa mãn x+y+z=1.Tìm GTLN của
Q=\(\dfrac{x}{x+\sqrt{x+yz}}+\dfrac{y}{y+\sqrt{y+zx}}+\dfrac{z}{z+\sqrt{z+xy}}\)
Cho 3 số thực dương x,y,z thỏa mãn x\(\ge\)z. Tìm giá trị nhỏ nhất của biểu thức
P= \(\frac{xz}{y^2+yz}+\frac{y^2}{xz+yz}+\frac{x+2z}{x+z}\)
Tìm gtln của (x + z)(y + t) biết x2 + y2 + 2z2 + 2t2 = 1
cho x,y,z thỏa mãn xy+yz+xz=1. Tìm GTLN của \(A=x^2+8y^2+z^2\)