Áp dụng bất đẳng thức Cauchy dạng phân thức
\(\Rightarrow\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ac}\ge\dfrac{9}{ab+bc+ac}\)
\(\Rightarrow VT\ge\dfrac{1}{a^2+b^2+c^2}+\dfrac{9}{ab+bc+ac}\)
\(\Leftrightarrow VT\ge\dfrac{1}{a^2+b^2+c^2}+\dfrac{1}{ab+bc+ac}+\dfrac{1}{ab+bc+ac}+\dfrac{7}{ab+ac+bc}\)
Theo hệ quả của bất đẳng thức Cauchy
\(\Rightarrow ab+bc+ac\le\dfrac{1}{3}\left(a+b+c\right)^2=\dfrac{1}{3}\)
\(\Rightarrow\dfrac{7}{ab+bc+ac}\ge21\) (1)
Áp dụng bất đẳng thức Cauchy dạng phân thức
\(\Rightarrow\dfrac{1}{a^2+b^2+c^2}+\dfrac{1}{ab+bc+ac}+\dfrac{1}{ab+bc+ac}\ge\dfrac{9}{a^2+b^2+c^2+2\left(ab+bc+ac\right)}=9\) (2)
Từ (1) và (2)
\(\Rightarrow VT\ge21+9=30\) ( đpcm )
Dấu " = " xảy ra khi \(a=b=c=\dfrac{1}{3}\)