§1. Bất đẳng thức

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Đỗ Thị Hằng

Cho các số thực dương a,b,c thỏa mãn \(ac\ge12,bc\ge8\). Tìm giá trị nhỏ nhất (nếu có) của biểu thức:

\(D=a+b+c+2\left(\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ca}\right)+\dfrac{8}{abc}\)

Nguyễn Việt Lâm
17 tháng 1 2021 lúc 13:07

Dự đoán điểm rơi xảy ra tại \(\left(a;b;c\right)=\left(3;2;4\right)\)

Đơn giản là kiên nhẫn tính toán và tách biểu thức:

\(D=13\left(\dfrac{a}{18}+\dfrac{c}{24}\right)+13\left(\dfrac{b}{24}+\dfrac{c}{48}\right)+\left(\dfrac{a}{9}+\dfrac{b}{6}+\dfrac{2}{ab}\right)+\left(\dfrac{a}{18}+\dfrac{c}{24}+\dfrac{2}{ac}\right)+\left(\dfrac{b}{8}+\dfrac{c}{16}+\dfrac{2}{bc}\right)+\left(\dfrac{a}{9}+\dfrac{b}{6}+\dfrac{c}{12}+\dfrac{8}{abc}\right)\)

Sau đó Cô-si cho từng ngoặc là được


Các câu hỏi tương tự
Nguyễn Quốc Việt
Xem chi tiết
Phạm Kim Oanh
Xem chi tiết
Phạm Kim Oanh
Xem chi tiết
Phạm Kim Oanh
Xem chi tiết
Le Minh Hoang
Xem chi tiết
Nguyễn Anh Minh
Xem chi tiết
Hồ Thị Thúy Hằng
Xem chi tiết
Phạm Kim Oanh
Xem chi tiết
L N T 39
Xem chi tiết