Lời giải:
Đặt $\frac{1}{x}=a; \sqrt{y-2}=b$ thì HPT trở thành:
\(\left\{\begin{matrix} 3a+\frac{1}{2}b=4\\ 4a-3b=-2\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} 18a+3b=24\\ 4a-3b=-2\end{matrix}\right.\)
$\Rightarrow (18a+3b)+(4a-3b)=24+(-2)$
$\Leftrightarrow 22a=22\Leftrightarrow a=1$
$b=(4a+2):3=(4.1+2):3=2$
Vậy: \(\left\{\begin{matrix} a=1\\ b=2\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} \frac{1}{x}=1\\ \sqrt{y-2}=2\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x=1\\ y=6\end{matrix}\right.\)