Ta có: \(\left\{{}\begin{matrix}\dfrac{3}{\sqrt{x+y}}-\dfrac{2}{\sqrt{x-y}}=4\\\dfrac{2}{\sqrt{x+y}}-\dfrac{1}{\sqrt{x-y}}=5\end{matrix}\right.\)
Đặt: \(t=\sqrt{x+y}\) và \(k=\sqrt{x-y}\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{3}{t}-\dfrac{2}{k}=4\\\dfrac{2}{t}+\dfrac{1}{k}=5\end{matrix}\right.\)
Ta lại đặt: \(a=\dfrac{1}{t}\) và \(u=\dfrac{1}{k}\)
\(\Leftrightarrow\left\{{}\begin{matrix}3a-2u=4\\2a+u=5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}3a-2u=4\\4a+2u=10\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}3a-2u=4\\7a=14\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}6-2u=4\\a=2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}u=1\\a=2\end{matrix}\right.\)
Mà:
\(u=1\Rightarrow\dfrac{1}{k}=1\Rightarrow k=1\)
\(a=2\Rightarrow\dfrac{1}{t}=2\Rightarrow t=\dfrac{1}{2}\)
Ta lại có:
\(k=1\Rightarrow\sqrt{x+y}=1\)
\(t=\dfrac{1}{2}\Rightarrow\sqrt{x-y}=\dfrac{1}{2}\)
Ta có hệ:
\(\left\{{}\begin{matrix}\sqrt{x-y}=1\\\sqrt{x+y}=\dfrac{1}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-y=1\\x+y=\dfrac{1}{4}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-y=1\\2x=\dfrac{5}{4}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{5}{8}-y=1\\x=\dfrac{5}{8}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=-\dfrac{3}{8}\\x=\dfrac{5}{8}\end{matrix}\right.\)
Vậy \(x-\dfrac{5}{8};y=-\dfrac{3}{8}\)
Đặt 1/căn x+y=a; 1/căn x-y=b
Theo đề, ta có hệ:
3a-2b=4 và 2a+b=5
=>a=2 và b=1
=>x+y=1/4 và x-y=1
=>x=5/8 và y=-3/8