Chứng minh rằng tổng bình phương của p số nguyên liên tiếp ( p nguyên tố, p>3) chia hết cho p.
Akai Haruma, svtkvtm, Hung nguyen, Nguyễn Việt Lâm giúp mình với . Please!!!!!!!!!!!!
Gọi p số nguyên liên tiếp đó là: \(x,x+1,x+2,...,x+p-1\)
Ta có:
\(x+\left(x+1\right)+\left(x+2\right)+...+\left(x+p-1\right)\equiv1+2+3+...+p-1\left(modp\right)\)
\(\Rightarrow x^2+\left(x+1\right)^2+\left(x+2\right)^2+...+\left(x+p-1\right)^2\equiv1^2+2^2+3^2+...+\left(p-1\right)^2\left(modp\right)\)
Ta lại có:
\(1^2+2^2+3^2+...+\left(p-1\right)^2=\frac{\left(p-1\right)p\left(2p-1\right)}{6}\)
Vì p là số nguyên tố lớn hơn 3 nên p không có ước 2, 3 từ đây ta thấy được là:
\(\left(p-1\right)p\left(2p-1\right)⋮6p\)
\(\Rightarrow1^2+2^2+3^2+...+\left(p-1\right)^2=\frac{\left(p-1\right)p\left(2p-1\right)}{6}⋮p\)
Vậy ta có điều phải chứng minh.