\(a^3 - a = a(a^2-1) = a(a-1)(a+1) = (a-1)a(a+1)\)
Tích hai số tự nhiên liên tiếp luôn chia hết cho 2 :
\((a-1)a\) ⋮ 2 (1)
Tích ba số tự nhiên liên tiếp luôn chia hết cho 3 :
\((a-1)a(a+1)\) ⋮ 3(2)
Từ (1)(2) suy ra: điều phải chứng minh
\(a^3 - a = a(a^2-1) = a(a-1)(a+1) = (a-1)a(a+1)\)
Tích hai số tự nhiên liên tiếp luôn chia hết cho 2 :
\((a-1)a\) ⋮ 2 (1)
Tích ba số tự nhiên liên tiếp luôn chia hết cho 3 :
\((a-1)a(a+1)\) ⋮ 3(2)
Từ (1)(2) suy ra: điều phải chứng minh
Chứng minh rằng với mọi số nguyên a và b :
a, a3b - ab3 chia hết cho 6
b, a5b - ab5 chia hết cho 30
Chứng minh rằng: Với mọi a,b ∈ Z, nếu a và b không chia hết cho 3 thì \(a^6-b^6\) chia hết cho 9
bài 7: chứng minh rằng
a. a^2(a+1)+2a(a+1) chia hết cho 6 với a là số nguyên
b. a(2a-3)-2a(a+1) chia hết cho 5 với a là số nguyên
c. x^2+2x+2>0 với mọi x
d. x^2-x+1>0 với mọi x
e. -x^2+4x-5<0 với mọi x
bài 7 : chứng minh rằng
a. a^2(a+1)+2a(a+1) chia hết cho 6 với a là số nguyên
b. a(2a-3)-2a(a+1) chia hết cho 5 với a là số nguyên
c. x^2+2x+2>0 với mọi x
d. x^2-x+1>0 với mọi x
e. -x^2+4x-5<0 với mọi x
13 : a) Chứng minh rằng( 3x+2)62-49 chia hết cho 3 với mọi sô nguyên n
b) Chứng minh rằng x(4x-1)^2-81x chia hết cho 8 với mọi sô nguyên n
14 Phân tích các đa thức sau thành nhân tử:
a) x^2+3x+2 ; b) x^2+x+6 ; c) x^2-5x+6 ; d) x^2+5x-6
e) x^2+4x+3 ; f) x^2-5x+4
chứng minh rằng
A=3n4-14n3+21n2-10n chia hết cho 24 với mọi số nguyên n
Chứng minh rằng \(A=n^3\left(n^2-7\right)^2-36n\) chia hết cho 5040 với mọi số tự nhiên n
Chứng minh rằng n2 + 11n + 2 không chia hết cho 12769 với mọi số nguyên n.
Chứng minh rằng :
a5 - a chia hết cho 30 với mọi a ϵ Z .😜😘