Cho tam giác ABC cân tại A, đường cao AH. Kẻ HN vuông góc AB, I là trung điểm của AN. Trên tia đối của tia BH lấy M sao cho B là trung điểm của MH.
Chứng minh rằng: MN vuông góc HI.
Cho tam giác ABC cân tại A, đường cao AH. Kẻ HN vuông góc AB, I là trung điểm của AN. Trên tia đối của tia BH lấy M sao cho B là trung điểm của MH.
Chứng minh rằng: MN vuông góc HI.
Tìm n để: 15:( n+2 ). Là phép chia hết.
Để 15 : (n + 2) là phép chia hết thì:
15 ⋮ (n + 2)
⇒ n + 2 ∈ Ư(15) = {-15; -5: -3; -1; 1; 3; 5; 15}
⇒ n ∈ {-17; -7; -5; -3; -1; 1; 3; 13}
Bài 3. Cho hình chữ nhật ABCD. Gọi I là điểm đối xứng với D qua C
a) Tứ giác ABIC là hình gì? Vì sao?
b) Gọi E là trung điểm của BC. Chứng minh A, E, I thẳng hàng.
c) Gọi O là giao điểm của AC và BD, M là trung điểm của BI. Chứng minh BOCM là hình thoi.
d) Tìm điều kiện của hình chữ nhật ABCD để tứ giác BOCM là hình vuông.
100+(430)+2145+(-530)
=[(-530)+430]+2145+100
=(-100)+2145+100
=[(-100) +100]+2145
=0+2145
=2145
2 + 3 - 4 =
Bài 4: Cho ΔABC vuông tại .A Gọi M là trung điểm của . ACTrên tia đối của tiaMB lấy điểm N sao cho M là trung điểm của . BN a) Chứng minh CN AC ⊥ và CN AB = b) Chứng minh AN BC = và . AN BC∥
Bài 4:
Xét ΔEAD và ΔEBC có
\(\hat{EAD}=\hat{EBC}\) (hai góc so le trong, AD//BC)
\(\hat{AED}=\hat{BEC}\) (hai góc đối đỉnh)
Do đó: ΔEAD~ΔEBC
=>\(\frac{EA}{EB}=\frac{AD}{BC}\)
=>\(\frac{2.2}{x}=\frac35\)
=>\(x=2,2\cdot\frac53=\frac{11}{3}\)
Bài 3:
EC+AE=AC
=>AE=9,5-4,5=5(cm)
Xét ΔABC có DE//BC
nên \(\frac{AD}{DB}=\frac{AE}{EC}\)
=>\(\frac{8}{DB}=\frac{5}{4,5}=\frac{10}{9}\)
=>\(DB=8\cdot\frac{9}{10}=7,2\left(\operatorname{cm}\right)\)
Bài 4:
Xét ΔEAD và ΔEBC có
\(\hat{EAD}=\hat{EBC}\) (hai góc so le trong, AD//BC)
\(\hat{AED}=\hat{BEC}\) (hai góc đối đỉnh)
Do đó: ΔEAD~ΔEBC
=>\(\frac{EA}{EB}=\frac{AD}{BC}\)
=>\(\frac{2.2}{x}=\frac35\)
=>\(x=2,2\cdot\frac53=\frac{11}{3}\)
Bài 3:
EC+AE=AC
=>AE=9,5-4,5=5(cm)
Xét ΔABC có DE//BC
nên \(\frac{AD}{DB}=\frac{AE}{EC}\)
=>\(\frac{8}{DB}=\frac{5}{4,5}=\frac{10}{9}\)
=>\(DB=8\cdot\frac{9}{10}=7,2\left(\operatorname{cm}\right)\)
a: Tọa độ đỉnh là:
\(\begin{cases}x=-\frac{b}{2a}=\frac{-5}{2\cdot\left(-1\right)}=\frac52\\ y=-\frac{b^2-4ac}{4a}=-\frac{5^2-4\cdot\left(-1\right)\cdot\left(-4\right)}{4\cdot\left(-1\right)}=-\frac{25-16}{-4}=-\frac{9}{-4}=\frac94\end{cases}\)
Vì a=-1<0
nên hàm số nghịch biến trên khoảng (5/2;+∞) và đồng biến trên khoảng (-∞;5/2)
Vẽ đồ thị:
b: Tọa độ đỉnh là:
\(\begin{cases}x=-\frac{b}{2a}=-\frac{2}{2\cdot1}=-\frac22=-1\\ y=-\frac{b^2-4ac}{4a}=-\frac{2^2-4\cdot1\cdot\left(-3\right)}{4\cdot1}=-\frac{4+12}{4}=-\frac{16}{4}=-4\end{cases}\)
Vì a=1>0 nên hàm số đồng biến trên khoảng (-1;+∞) và nghịch biến trên khoảng (-∞;-1)
Vẽ đồ thị: