Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Đặng thị dương
Xem chi tiết
Akai Haruma
8 tháng 6 2018 lúc 19:04

Câu 1:

\(y=x^3-3mx^2+2\Rightarrow y'=3x^2-6mx\)

\(y'=0\Leftrightarrow \left[\begin{matrix} x=0\\ x=2m\end{matrix}\right.\)

Để $(C_m)$ có 2 cực trị thì \(y'=0\) phải có 2 nghiệm , tức là $m\neq 0$

Khi đó: Hai cực trị của đths là: \(A(0; 2); B(2m, 2-4m^3)\)

Gọi ptđt $AB$ là $y=ax+b$

\(\Rightarrow \left\{\begin{matrix} 2=a.0+b\\ 2-4m^3=2ma+b\end{matrix}\right.\Rightarrow \left\{\begin{matrix} b=2\\ a=-2m^2\end{matrix}\right.\)

Vậy PTĐT $AB$ là: \(y=-2m^2x+2\)

$I(1,0)$ đi qua nên \(0=-2m^2+2\Rightarrow m=\pm 1\)

Akai Haruma
8 tháng 6 2018 lúc 19:20

Câu 2:

Ta có:

\(y=(2x^2-1)^3(x^2-1)^2\)

\(\Rightarrow y'=3.4x(2x^2-1)^2(x^2-1)^2+2.2x(2x^2-1)^3(x^2-1)\)

\(=4x(x^2-1)(2x^2-1)^2(5x^2-4)\)

Vì $(2x^2-1)^2$ là lũy thừa số mũ chẵn nên tại \(x=\pm \sqrt{\frac{1}{2}}\) thì đths không đổi hướng biến thiên mà tiếp tục đơn điệu tăng hoặc đơn điệu giảm nên nó không phải điểm cực trị

Do đó các điểm cực trị của đths thỏa mãn: \(4x(x^2-1)(5x^2-4)=0\Leftrightarrow x=0; x=\pm 1; x=\frac{\pm 2}{\sqrt{5}}\)

Tức là có 5 cực trị

Hau Dang
Xem chi tiết
Akai Haruma
8 tháng 6 2018 lúc 8:52

Lời giải:

Ta có: \(y=ax-\sin x+3\)

\(\Rightarrow y'=a-\cos x\)

Để hàm số $y$ đồng biến trên $R$ thì:

\(y'\geq 0, \forall x\in\mathbb{R}\Leftrightarrow a-\cos x\geq 0\)

\(\Leftrightarrow a\geq \cos x, \forall x\in\mathbb{R}\Leftrightarrow a\geq max(\cos x)\)

\(\cos x\leq 1\rightarrow \max (\cos x)=1\Rightarrow a\geq 1\)

Vậy \(a\in [1;+\infty)\)

Thủy Tiên
Xem chi tiết
Akai Haruma
29 tháng 5 2018 lúc 12:06

Lời giải:

Chọn điểm $I$ sao cho \(\overrightarrow{IA}-2\overrightarrow{IB}=0\)

\(\Leftrightarrow (1-x_I, 2-y_I, 1-z_I)-2(2-x_I, -1-y_I, 3-z_I)=0\)

\(\Rightarrow \left\{\begin{matrix} 1-x_I-2(2-x_I)=0\\ 2-y_I-2(-1-y_I)=0\\ 1-z_I-2(3-z_I)=0\end{matrix}\right.\Rightarrow I(3,-4, 5)\)

Có:

\(MA^2-2MB^2=(\overrightarrow {MI}+\overrightarrow{IA})^2-2(\overrightarrow{MI}+\overrightarrow{IB})^2\)

\(=-MI^2+IA^2-2IB^2+2\overrightarrow{MI}(\overrightarrow{IA}-2\overrightarrow{IB})\)

\(=-MI^2+IA^2-2IB^2\)

Do đó để \(MA^2-2MB^2\) max thì \(MI^2\) min. Do đó $M$ là hình chiếu vuông góc của $I$ xuống mặt phẳng $Oxy$

Gọi d là đường thẳng đi qua $I$ và vuông góc với (Oxy)

Khi đó: \(d:\left\{\begin{matrix} x=3\\ y=-4\\ z=5+t\end{matrix}\right.\)

$M$ thuộc d và $(Oxy)$ thì ta có thể suy ra ngay đáp án D

Thu Hoài
Xem chi tiết
Akai Haruma
1 tháng 4 2018 lúc 1:03

Lời giải:

Giả sử \(A=(a,0,0); B=(0,b,0); C=(0,0,c)\)

Phương trình mặt phẳng $(P)$ là:

\(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1\) (đây là dạng PTMP theo đoạn chắn rất quen thuộc)

Vì \(M\in (P)\Rightarrow \frac{1}{a}+\frac{2}{b}+\frac{1}{c}=1(*)\)

Ta có:

\(A=\frac{1}{OA^2}+\frac{1}{OB^2}+\frac{1}{OC^2}=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\)

Áp dụng BĐT Bunhiacopxky có:

\(\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)(1+2^2+1)\geq \left(\frac{1}{a}+\frac{2}{b}+\frac{1}{c}\right)^2\)

\(\Leftrightarrow 6A\geq 1\Leftrightarrow A\geq \frac{1}{6}\). Điểm "min" xảy ra khi : \(\frac{1}{a}=\frac{1}{2b}=\frac{1}{c}\)

Đặt \(\frac{1}{a}=\frac{1}{2b}=\frac{1}{c}=t\Rightarrow \left\{\begin{matrix} a=\frac{1}{t}\\ b=\frac{1}{2t}\\ c=\frac{1}{t}\end{matrix}\right.\). Thay vào \((*)\Rightarrow t=\frac{1}{6}\)

Thay vào ptmp ban đầu suy ra ptmp (P) là:

\(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1\Leftrightarrow xt+2yt+zt=1\)

\(\Leftrightarrow \frac{x}{6}+\frac{y}{3}+\frac{z}{6}=1\) hay \(x+2y+z-6=0\)

Nhó
1 tháng 4 2018 lúc 19:57

§2. Phương trình mặt phẳng

Sói Ca
Xem chi tiết
Akai Haruma
24 tháng 3 2018 lúc 17:20

Lời giải:

ĐK: \(m\in (-\infty; 0)\cup (4;+\infty)\)

\(y=\frac{x-m^2-1}{x-m}=1-\frac{m^2-m+1}{x-m}\)

\(\Rightarrow y'=\frac{m^2-m+1}{(x-m)^2}=\frac{(m-\frac{1}{2})^2+\frac{3}{4}}{(x-m)^2}>0\)

Do đó hàm số đã cho luôn đồng biến

\(\Rightarrow y(x)\leq y(4)\Leftrightarrow y_{\max}=y(4)=\frac{3-m^2}{4-m}\)

Ta có: \(\frac{3-m^2}{4-m}=-6\Leftrightarrow m^2+6m-27=0\)

\(\Leftrightarrow (m-3)(m+9)=0\) \(\Leftrightarrow \left[\begin{matrix} m=3(L)\\ m=-9(C)\end{matrix}\right.\)

Vậy có 1 giá trị m thỏa mãn .

Nhân Hoàng Ngọc
Xem chi tiết
Mysterious Person
18 tháng 7 2018 lúc 13:39

đặc \(z=a+bi\) với \(a;b\in R;i^2=-1\)

ta có : \(\left|z-4-3i\right|=\sqrt{5}\Leftrightarrow\left(a-4\right)^2+\left(b-3\right)^2=5\)

\(\Leftrightarrow a^2+b^2=8x+6x-20\)

đặc \(A=\left|z+1-3i\right|+\left|z-1+i\right|=\sqrt{\left(a+1\right)^2+\left(b-3\right)^2}+\sqrt{\left(a-1\right)^2+\left(b+1\right)^2}\)

áp dụng bunhiacopxki ta có :

\(A\le\sqrt{2\left[\left(a+1\right)^2+\left(b-3\right)^2+\left(a-1\right)^2+\left(b+1\right)^2\right]}\)

\(\Leftrightarrow A\le\sqrt{2\left(2a^2+2b^2-4b+12\right)}=\sqrt{2\left(16a+12b-40-4b+12\right)}\)

\(\Leftrightarrow A\le\sqrt{2\left[16\left(a-4\right)+8\left(b-3\right)\right]+120}\)

áp dụng bunhiacopxki lần nữa ta có :

\(A\le\sqrt{2\left(16^2+8^2\right)\left[\left(a-4\right)^2+\left(b-3\right)^2\right]+120}\)

\(\Leftrightarrow A\le2\sqrt{830}\) dâu "=" xảy ra khi \(\left\{{}\begin{matrix}\left(a+1\right)^2+\left(b-3\right)^2=\left(a-1\right)^2+\left(b+1\right)^2\\\dfrac{a-4}{16}=\dfrac{b-3}{8}\\\left(a-4\right)^2+\left(b-3\right)^2=5\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}a=6\\b=4\end{matrix}\right.\\\left\{{}\begin{matrix}a=2\\b=2\end{matrix}\right.\end{matrix}\right.\)

khi \(\left\{{}\begin{matrix}a=6\\b=4\end{matrix}\right.\Rightarrow P=a+b=10\)

khi \(\left\{{}\begin{matrix}a=2\\b=2\end{matrix}\right.\Rightarrow P=a+b=4\)

vậy \(P=10;P=4\)

Nhân Hoàng Ngọc
Xem chi tiết
Akai Haruma
25 tháng 3 2018 lúc 0:24

Lời giải:

Đặt \(z=a+bi\)

Từ \(|z|=m^2+2m+5\Leftrightarrow \sqrt{a^2+b^2}=m^2+2m+5\)

\(\Leftrightarrow a^2+b^2=(m^2+2m+5)^2\)

\(w=(3-4i)z-2i=(3-4i)(a+bi)-2i\)

Thực hiện khai triển: \(w=(3a+4b)+i(3b-4a-2)\)

Bán kính đường tròn chứa tập hợp biểu diễn số phức $w$ là:

\(R=\sqrt{(3a+4b)^2+(3b-4a-2)^2}\)

\(=\sqrt{25(a^2+b^2)+16a-12b+4}\)

Ta có:

\(25(a^2+b^2)+16a-12b+4=\frac{45}{2}(a^2+b^2)+(a\sqrt{\frac{5}{2}}+\frac{8\sqrt{10}}{5})^2+(b\sqrt{\frac{5}{2}}-\frac{6\sqrt{10}}{5})^2-36\)

\(\geq \frac{45}{2}(a^2+b^2)-36\)

\(\Rightarrow R\geq \sqrt{\frac{45}{2}(m^2+2m+5)^2-36}=\sqrt{\frac{45}{2}[(m+1)^2+4]^2-36}\)

\(\geq \sqrt{\frac{45}{2}.4^2-36}=\sqrt{324}\)

Vậy \(R_{\min}=\sqrt{324}=18\)

Huyền Nguyễn
Xem chi tiết
Akai Haruma
1 tháng 3 2018 lúc 14:58

Lời giải:

Ta có:

\(\int ^{\frac{\pi}{2}}_{0}\frac{\sin x}{(\sin x+\cos x)^3}dx=\int ^{\frac{\pi}{2}}_{\frac{\pi}{4}}\frac{\sin x}{(\sin x+\cos x)^3}dx+\int ^{\frac{\pi}{4}}_{0}\frac{\sin x}{(\sin x+\cos x)^3}dx\)

\(=A+B\)

Xét riêng rẽ:

\(A=\int ^{\frac{\pi}{2}}_{\frac{\pi}{4}}\frac{\sin^3 x}{(\sin x+\cos x)^3}.\frac{dx}{\sin ^2x}=\int ^{\frac{\pi}{2}}_{\frac{\pi}{4}}\frac{1}{\left(\frac{\sin x+\cos x}{\sin x}\right)^3}d(-\cot x)\)

\(=\int ^{\frac{\pi}{2}}_{\frac{\pi}{4}}\frac{1}{(\cot x+1)^3}d(-\cot x)=-\int ^{\frac{\pi}{2}}_{\frac{\pi}{4}}\frac{d(\cot x+1)}{(\cot x+1)^3}\)

\(=\left.\begin{matrix} \frac{\pi}{2}\\ \frac{\pi}{4}\end{matrix}\right|\frac{1}{2(\cot x+1)^2}=\frac{3}{8}\)

\(B=\int ^{\frac{\pi}{4}}_{0}\frac{\sin x+\cos x-\cos x}{(\sin x+\cos x)^3}dx\)\(=\int ^{\frac{\pi}{4}}_{0}\frac{ 1}{(\sin x+\cos x)^2}dx-\int ^{\frac{\pi}{4}}_{0}\frac{\cos x}{(\sin x+\cos x)^3}dx\)

\(=\int ^{\frac{\pi}{4}}_{0}\frac{1}{\left(\frac{\sin x+\cos x}{\cos x}\right)^2}.\frac{dx}{\cos ^2x}-\int ^{\frac{\pi}{4}}_{0}\frac{1}{\left(\frac{\sin x+\cos x}{\cos^3 x}\right)^3}.\frac{dx}{\cos ^2x}\)

\(=\int ^{\frac{\pi}{4}}_{0}\frac{d(\tan x)}{(\tan x+1)^2}-\int ^{\frac{\pi}{4}}_{0}\frac{d(\tan x)}{(\tan x+1)^3}\)

\(=\int ^{\frac{\pi}{4}}_{0}\frac{d(\tan x+1)}{(\tan x+1)^2}-\int ^{\frac{\pi}{4}}_{0}\frac{d(\tan x+1)}{(\tan x+1)^3}\)

\(=\left.\begin{matrix} \frac{\pi}{4}\\ 0\end{matrix}\right|\frac{-1}{\tan x+1}+\left.\begin{matrix} \frac{\pi}{4}\\ 0\end{matrix}\right|\frac{1}{2(\tan x+1)^2}=\frac{1}{8}\)

Do đó: \(\int ^{\frac{\pi}{2}}_{0}\frac{\sin x}{(\sin x+\cos x)^3}dx=\frac{3}{8}+\frac{1}{8}=\frac{1}{2}\)

Sở dĩ phải chia tích phân thành tổng nhỏ như vậy là do khi ta thực hiện chia sin x xuống dưới mẫu thì hàm số không liên tục trong đoạn \([\frac{\pi}{2}; 0]\)

Hà Tuyết
Xem chi tiết
Akai Haruma
12 tháng 2 2018 lúc 15:22

Lời giải:

Ta có:

\(A=\int \frac{x\sin x+\cos x}{x^2-\cos ^2x}dx=\int \frac{(\cos x-x)+x(\sin x+1)}{x^2-\cos ^2x}dx\)

\(=-\int \frac{dx}{\cos x+x}+\int \frac{x(\sin x+1)}{x^2-\cos ^2x}dx=-\int \frac{dx}{x+\cos x}+\frac{1}{2}\int (\sin x+1)\left(\frac{1}{x-\cos x}+\frac{1}{x+\cos x}\right)dx\)

\(=-\int \frac{dx}{x+\cos x}+\frac{1}{2}\int (\sin x+1)\frac{dx}{x-\cos x}+\frac{1}{2}\int (\sin x-1)\frac{dx}{x+\cos x}+\int \frac{dx}{x+\cos x}\)

\(=\frac{1}{2}\int (\sin x+1)\frac{dx}{x-\cos x}+\frac{1}{2}\int (\sin x-1)\frac{dx}{x+\cos x}\)

\(=\frac{1}{2}\int \frac{d(x-\cos x)}{x-\cos x}+\frac{1}{2}\int \frac{-d(x+\cos x)}{x+\cos x}\)

\(=\frac{1}{2}\ln |x-\cos x|-\frac{1}{2}\ln |x+\cos x|+c\)

Xét biểu thức $B$

\(B=\int \frac{\ln x-1}{x^2-\ln ^2x}dx=\int \frac{(\ln x-x)+(x-1)}{x^2-\ln ^2x}dx\)

\(=-\int \frac{dx}{x+\ln x}+\int \frac{x-1}{x^2-\ln ^2x}dx=-\int \frac{dx}{x+\ln x}+\frac{1}{2}\int \frac{(x-1)}{x}\left(\frac{1}{x-\ln x}+\frac{1}{x+\ln x}\right)dx\)

\(=-\int \frac{dx}{x+\ln x}+\frac{1}{2}\int \frac{1}{x-\ln x}.\frac{x-1}{x}dx+\frac{1}{2}\int \frac{1}{x+\ln x}.\frac{x-1}{x}dx\)

\(=-\int \frac{dx}{x+\ln x}+\frac{1}{2}\int \frac{1}{x-\ln x}.\frac{x-1}{x}dx-\frac{1}{2}\int \frac{1}{x+\ln x}.\frac{1+x}{x}dx+\int \frac{dx}{x+\ln x}\)

\(=\frac{1}{2}\int \frac{1}{x-\ln x}.\frac{x-1}{x}dx-\frac{1}{2}\int \frac{1}{x+\ln x}.\frac{1+x}{x}dx\)

\(=\frac{1}{2}\int \frac{d(x-\ln x)}{x-\ln x}-\frac{1}{2}\int \frac{d(x+\ln x)}{x+\ln x}\)

\(=\frac{1}{2}\ln |x-\ln x|-\frac{1}{2}\ln |x+\ln x|+c\)


Minh Lê Văn
Xem chi tiết
Akai Haruma
22 tháng 1 2018 lúc 11:03

Lời giải:

Đặt \(z=a+bi(a,b\in\mathbb{R})\)

Từ \(z\overline{z}=1\Rightarrow a^2+b^2=1\)

Do đó tập hợp các điểm biểu diễn số phức $z$ nằm trên đường tròn tâm \(O(0;0)\) bán kính \(R=1\)

Lại có:

\(|z+\sqrt{3}+i|=m(m\geq 0)\)

\(\Leftrightarrow |(a+\sqrt{3})+i(b+1)|=m\)

\(\Leftrightarrow (a+\sqrt{3})^2+(b+1)^2=m^2\)

Do đó tập hợp các điểm biểu diễn số phức $z$ nằm trên đường tròn tâm \(I(-\sqrt{3}; -1)\) bán kính \(R'=m\)

Để số phức $z$ tồn tại duy nhất thì \((O); (I) \) phải tiếp xúc trong hoặc tiếp xúc ngoài.

Nếu \((O); (I)\) tiếp xúc ngoài:

\(\Rightarrow OI=R+R'\Leftrightarrow 2=1+m\Leftrightarrow m=1\)

Nếu \((O),(I)\) tiếp xúc trong.

TH1: \((O)\) nằm trong $(I)$

\(OI+R=R'\Leftrightarrow 2+1=m\Leftrightarrow m=3\)

TH2: \((I)\) nằm trong $(O)$

\(OI+R'=R\Leftrightarrow 2+m=1\Leftrightarrow m=-1\) (loại vì \(m\geq 0\) )

Do đó \(S=\left\{1;3\right\}\) hay số phần tử của S là 2.