Bài 1: Số phức

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Minh Lê Văn

Gọi s là tập hợp tất cả các giá trị thực của tham số m để tồn tại duy nhất số phức z thỏa mãn z.z ngang =1 và / z+căn3+i/ =m tìm số phần tử của s

Akai Haruma
22 tháng 1 2018 lúc 11:03

Lời giải:

Đặt \(z=a+bi(a,b\in\mathbb{R})\)

Từ \(z\overline{z}=1\Rightarrow a^2+b^2=1\)

Do đó tập hợp các điểm biểu diễn số phức $z$ nằm trên đường tròn tâm \(O(0;0)\) bán kính \(R=1\)

Lại có:

\(|z+\sqrt{3}+i|=m(m\geq 0)\)

\(\Leftrightarrow |(a+\sqrt{3})+i(b+1)|=m\)

\(\Leftrightarrow (a+\sqrt{3})^2+(b+1)^2=m^2\)

Do đó tập hợp các điểm biểu diễn số phức $z$ nằm trên đường tròn tâm \(I(-\sqrt{3}; -1)\) bán kính \(R'=m\)

Để số phức $z$ tồn tại duy nhất thì \((O); (I) \) phải tiếp xúc trong hoặc tiếp xúc ngoài.

Nếu \((O); (I)\) tiếp xúc ngoài:

\(\Rightarrow OI=R+R'\Leftrightarrow 2=1+m\Leftrightarrow m=1\)

Nếu \((O),(I)\) tiếp xúc trong.

TH1: \((O)\) nằm trong $(I)$

\(OI+R=R'\Leftrightarrow 2+1=m\Leftrightarrow m=3\)

TH2: \((I)\) nằm trong $(O)$

\(OI+R'=R\Leftrightarrow 2+m=1\Leftrightarrow m=-1\) (loại vì \(m\geq 0\) )

Do đó \(S=\left\{1;3\right\}\) hay số phần tử của S là 2.


Các câu hỏi tương tự
Nguyễn Thị Thùy Chi
Xem chi tiết
Nguyễn Đắc Phúc An
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Kiên Đỗ
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Nhân Hoàng Ngọc
Xem chi tiết
Khang Nguyễn
Xem chi tiết
Đặng Đức Trung
Xem chi tiết