Gọi s là tập hợp tất cả các giá trị thực của tham số m để tồn tại duy nhất số phức z thỏa mãn z.z ngang =1 và / z+căn3+i/ =m tìm số phần tử của s
Trên mặt phẳng tọa độ, tìm tập hợp điểm biểu diễn các số phức z thỏa mãn điều kiện :
a) Phần thực của z bằng -2
b) Phần ảo của z bằng 3
c) Phần thực của z thuộc khoảng (-1; 2)
d) Phần ảo của z thuộc đoạn [1; 3]
e) Phần thực và phần ảo của z đểu thuộc đoạn [-2; 2]
Trên mặt phẳng tọa độ tìm tập hợp điểm biểu diễn các số phức \(z\) thỏa mãn điều kiện :
a) Phần thực của \(z\) bằng phần ảo của nó
b) Phần thực của \(z\) là số đối của phần ảo của nó
c) Phần ảo của \(z\) bằng hai lần phần thực của nó cộng với 1
d) Môđun của \(z\) bằng 1, phần thực của \(z\) không âm
Cho số phức z thoả mãn (z-4i)( liên hợp của z +2) là một số thuần ảo . Biết tập hợp các điểm biễu diễn z là một đường tròn . Tìm toạ độ bán kính của đường tròn đó
Trong mặt phẳng tọa độ Oxy ,tìm tập hợp biểu diễn các số phức z thỏa mãn điều kiện phần thực bằng 3 lần phần ảo của nó là một
A. Parabol
B. Đường tròn
C. Đường thẳng
D. Elip
Trên mặt phẳng tọa độ, tìm tập hợp điểm biểu diễn các số phức z thỏa mãn điều kiện :
a) \(\left|z\right|=1\)
b) \(\left|z\right|\le1\)
c) \(1< \left|z\right|\le2\)
d) \(\left|z\right|=1\) và phần ảo của z bằng 1
trên tập hợp số phức, xét phương trình \(z^2\)-2(2m-1)z+\(m^2\)=0. Có bao nhiêu giá trị của m để phương trình có hai nghiệm phân biệt z1,z2 thỏa mãn \(z1^2\)+\(z2^2\)=2
Giúp e bài này với. Cho số phức z=a+bi sao cho (z-4)/(z-4i) là số thuần ảo. Nếu số phức có môdun lớn nhất thì biểu thức P= a2 + b2 bằng
A.4 B.8 C.24 D.20
Cho số phức Z thỏa mãn căn2.|z-1|=|z+3i|. Tìm giá trị lớn nhất của biểu thức P=|z+i|+2|số phức liên hợp của z -4+7i|