\(z=x+i.y\) với \(x=3y\)
\(\Rightarrow x-3y=0\Rightarrow\) tập hợp z là một đường thẳng
\(z=x+i.y\) với \(x=3y\)
\(\Rightarrow x-3y=0\Rightarrow\) tập hợp z là một đường thẳng
Trên mặt phẳng tọa độ, tìm tập hợp điểm biểu diễn các số phức z thỏa mãn điều kiện :
a) Phần thực của z bằng -2
b) Phần ảo của z bằng 3
c) Phần thực của z thuộc khoảng (-1; 2)
d) Phần ảo của z thuộc đoạn [1; 3]
e) Phần thực và phần ảo của z đểu thuộc đoạn [-2; 2]
Trên mặt phẳng tọa độ tìm tập hợp điểm biểu diễn các số phức \(z\) thỏa mãn điều kiện :
a) Phần thực của \(z\) bằng phần ảo của nó
b) Phần thực của \(z\) là số đối của phần ảo của nó
c) Phần ảo của \(z\) bằng hai lần phần thực của nó cộng với 1
d) Môđun của \(z\) bằng 1, phần thực của \(z\) không âm
Trên mặt phẳng tọa độ, tìm tập hợp điểm biểu diễn các số phức z thỏa mãn điều kiện :
a) \(\left|z\right|=1\)
b) \(\left|z\right|\le1\)
c) \(1< \left|z\right|\le2\)
d) \(\left|z\right|=1\) và phần ảo của z bằng 1
Hãy biểu diễn các số phức \(z\) trên mặt phẳng tọa độ, biết \(\left|z\right|\le2\) và :
a) Phần thực của \(z\) không vượt quá phần ảo của nó
b) Phần ảo của \(z\) lớn hơn 1
c) Phần ảo của \(z\) nhỏ hơn 1, phần thực của \(z\) lớn hơn 1
Cho hai số phức \(\alpha=a+bi;\beta=c+di\)
Hãy tìm điều kiện của \(a,b,c,d\) để các điểm biểu diễn \(\alpha\) và \(\beta\) trên mặt phẳng tọa độ :
a) Đối xứng với nhau qua trục Ox
b) Đối xứng với nhau qua trục Oy
c) Đối xứng với nhau qua đường phân giác của góc phần tư thứ nhất và góc phần tư thứ ba
d) Đối xứng với nhau qua gốc tọa độ
Cho số phức z thoả mãn điều kiện |z-2+3i| <= 3 . Trong mp Oxy , tập hợp điểm biểu diễn số phức w=2z+1-i là hình tròn có diện tích ?
tìm tập hợp điểm biểu diễn số phức Z thoả mãn điều kiện
| Z - 4i | + | Z + 4i | = 10
Cho số phức z thoả mãn (z-4i)( liên hợp của z +2) là một số thuần ảo . Biết tập hợp các điểm biễu diễn z là một đường tròn . Tìm toạ độ bán kính của đường tròn đó
Tìm số phức \(z\), biết :
a) \(\left|z\right|=2\) và \(z\) là số thuần ảo
b) \(\left|z\right|=5\) và phần thực của \(z\) bằng hai lần phần ảo của nó
c) \(z=\overline{z}\)
d) \(z=-\overline{z}\)