Cho tam giác ABC. Một đường thẳng cắt các cạnh BC, AC theo thứ tự ở D và E và cắt đường thẳng BA ở F. Vẽ hình bình hành BDEH. Đường thẳng đi qua F và song song với BC cắt HA tại I. Chứng minh FI = DC
Cho tam giác ABC. Một đường thẳng cắt các cạnh BC, AC theo thứ tự ở D và E và cắt đường thẳng BA ở F. Vẽ hình bình hành BDEH. Đường thẳng đi qua F và song song với BC cắt HA tại I. Chứng minh FI = DC
Cho m\(\ge\)0. Tính x,y theo m biết: \(\sqrt{x+y-m}=\sqrt{x}+\sqrt{y}-\sqrt{m}\)
Chứng minh rằng:
\(\dfrac{1}{\sqrt{1}+\sqrt{2}}+\dfrac{1}{\sqrt{3}+\sqrt{4}}+...+\dfrac{1}{\sqrt{79}+\sqrt{80}}>4\)
cho đường tròn (O;R) và đường thẳng xy không giao nhau. Từ 1 điểm M \(\in\) xy, kẻ các tiếp tuyến MP, MQ với (O). CMR:
PQ luôn đi qua 1 điểm cố định khi M di chuyển trên xy
Giải hpt : \(\left\{{}\begin{matrix}2x^2+3xy-2y^2-5\left(2x-y\right)=0\\x^2-2xy-3y^2+15=0\end{matrix}\right.\)
\(\left\{{}\begin{matrix}2x^2+3xy-2y^2-5\left(2x-y\right)=0\\x^2-2xy-3y^2+15=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(2x-y\right)\left(x+2y\right)-5\left(2x-y\right)=0\\x^2-2xy-3y^2+15=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(2x-y\right)\left(x+2y-5\right)=0\left(1\right)\\x^2-2xy-3y^2+15=0\left(2\right)\end{matrix}\right.\)
\(PT\left(1\right)\Leftrightarrow\left[{}\begin{matrix}2x-y=0\\x+2y-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{y}{2}\\x=5-2y\end{matrix}\right.\)
Với \(x=\dfrac{y}{2}\) : \(PT\left(2\right)\Leftrightarrow\dfrac{y^2}{4}-y^2-3y^2+15=0\)
\(\Leftrightarrow-15y^2+60=0\)
\(\Leftrightarrow y^2-4=0\)
\(\Leftrightarrow\left[{}\begin{matrix}y=-2\\y=2\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-1\\x=1\end{matrix}\right.\)
Với \(x=5-2y\) : \(PT\left(2\right)\Leftrightarrow\left(5-2y\right)^2-2y\left(5-2y\right)-3y^2+15=0\)
\(\Leftrightarrow4y^2-20y+25+4y^2-10y-3y^2+15=0\)
\(\Leftrightarrow5y^2-30y+40=0\)
\(\Leftrightarrow y^2-6y+8=0\)
\(\Leftrightarrow\left(y-2\right)\left(y-4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}y=2\\y=4\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=1\\x=-3\end{matrix}\right.\)
Vậy phương trình có 3 cặp nghiệm : \(\left[{}\begin{matrix}\left(x;y\right)=\left(-1;-2\right)\\\left(x;y\right)=\left(1;2\right)\\\left(x;y\right)=\left(-3;4\right)\end{matrix}\right.\)
Cho \(a,b,c\) là các số thực dương thỏa mãn \(abc=1.\) Chứng minh rằng:
\(\sqrt[4]{2a^2+bc}+\sqrt[4]{2b^2+ac}+\sqrt[4]{2c^2+ab}\)
\(\le\dfrac{ab+bc+ca}{\sqrt[4]{3}}.\sqrt{\sqrt{a}+\sqrt{b}+\sqrt{c}}\)
Cho biểu thức:
B= \(\dfrac{x+\sqrt{x^2-2x}}{x-\sqrt{x^2-2x}}-\dfrac{x-\sqrt{x^2-2x}}{x+\sqrt{x^2-2x}}\)
a) Tìm điều kiện của x để B xác định
b) Rút gọn B
c) Tìm giá trị của x để B < 2
P/s : Không chắc ....
a) Để \(B\) xác định thì :
\(\left\{{}\begin{matrix}x^2-2x\ge0\\x-\sqrt{x^2-2x}\ne0\end{matrix}\right.\)
\(\Leftrightarrow0< x\le2\)
b) Ta có : \(B=\frac{x+\sqrt{x^2-2x}}{x-\sqrt{x^2-2x}}-\frac{x-\sqrt{x^2-2x}}{x+\sqrt{x^2-2x}}\)
\(=\frac{\left(x+\sqrt{x^2-2x}\right)^2-\left(x-\sqrt{x^2-2x}\right)^2}{\left(x-\sqrt{x^2-2x}\right)\left(x+\sqrt{x^2-2x}\right)}\)
\(=\frac{4x\sqrt{x^2-2x}}{2x}=2\sqrt{x^2-2x}\)
c) Để \(B< 2\Leftrightarrow2\sqrt{x^2-2x}< 2\)
\(\Leftrightarrow\sqrt{x^2-2x}< 1\)
\(\Leftrightarrow x^2-2x< 1\)
\(\Leftrightarrow\left(x-1\right)^2< 2\)
\(\Leftrightarrow-2< x-1< 2\)
\(\Leftrightarrow-1< x< 3\) kết hợp với ĐKXĐ
\(\Leftrightarrow\)\(0< x\le2\)
Tìm nghiệm nguyên cuả phương trình : \(\sqrt{x-2008}-2\sqrt{y-2009}+\sqrt{z-2010}+3012=\dfrac{1}{2}\left(x+y+z\right)\)
cho 3 số a,b,c khác 0 thỏa mãn abc=1 và \(\dfrac{a}{b^3}+\dfrac{b}{c^3}+\dfrac{c}{a^3}\)=\(\dfrac{b^3}{a}+\dfrac{c^3}{b}+\dfrac{a^3}{c}\)
Cm: Trong 3 số a,b,c luôn tồn tại một số là lập phương của một trong hai số còn lại
tìm min của bt \(P=\frac{2}{a^2+b^2}+\frac{35}{ab}+2ab\) (với a>0; b>0 ; \(a+b\le4\) )
\(P=\frac{2}{a^2+b^2}+\frac{2}{2ab}+\frac{34}{ab}+\frac{17ab}{8}-\frac{ab}{8}\)
\(P=2\left(\frac{1}{a^2+b^2}+\frac{1}{2ab}\right)+\frac{34}{ab}+\frac{17ab}{8}-\frac{ab}{8}\)
\(P\ge2\cdot\frac{4}{a^2+b^2+2ab}+2\sqrt{\frac{34}{ab}\cdot\frac{17ab}{8}}-\frac{\frac{\left(a+b\right)^2}{4}}{8}\)
( do \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y};x+y\ge2\sqrt{xy};ab\le\frac{\left(a+b\right)^2}{4}\))
\(\Rightarrow P\ge\frac{8}{\left(a+b\right)^2}+2\sqrt{\frac{289}{4}}-\frac{\frac{4^2}{4}}{8}\)
\(\Rightarrow P\ge\frac{8}{16}+17-\frac{1}{2}=17\)
\(P=17\Leftrightarrow\left\{{}\begin{matrix}a^2+b^2=2ab\\\frac{34}{ab}=\frac{17ab}{8}\\a=b\\a+b=4\end{matrix}\right.\Leftrightarrow a=b=2\)
Vậy Min P = 17 \(\Leftrightarrow a=b=2\)