\(\frac{\left(sina+cosa\right)^2-1}{cota-sina.cosa}=\frac{sin^2a+cos^2a+2sina.cosa-1}{\frac{cosa}{sina}-sina.cosa}=\frac{2sin^2a.cosa}{cosa-sin^2a.cosa}\)
\(=\frac{2sin^2a.cosa}{cosa\left(1-sin^2a\right)}=\frac{2sin^2a}{cos^2a}=2tan^2a\)
\(\frac{\left(sina+cosa\right)^2-1}{cota-sina.cosa}=\frac{sin^2a+cos^2a+2sina.cosa-1}{\frac{cosa}{sina}-sina.cosa}=\frac{2sin^2a.cosa}{cosa-sin^2a.cosa}\)
\(=\frac{2sin^2a.cosa}{cosa\left(1-sin^2a\right)}=\frac{2sin^2a}{cos^2a}=2tan^2a\)
Chứng minh
1.\(\frac{h_a}{h_b}=\frac{sinA}{sinB}\)
2.\(cotA+cotB+cotC\ge\sqrt{3}\)
3.\(\left(b^2-c^2\right)cosA=a\left(c.cosC-b.cosB\right)\)
4.\(a^2=b^2+c^2-4S.cotA\)
5.\(a^2+b^2\ge\frac{4S}{sinC}\)
Câu 1: a/ Chứng minh rằng : \(\frac{sin2a+cosa}{2sina+1}=cosa\)
b/ Thu gọn biểu thức : P= \(\frac{\left(sin^4x-cos^4x\right)\left[\left(sinx+cosx\right)^2-1\right]}{1+cos4x}\)
Chứng minh
1.\(tanA=\frac{abc}{R\left(b^2+c^2-a^2\right)}\)
2.\(h_a=\frac{a.sinB.sinC}{sin\left(B+C\right)}\)
3.\(a\left(cosB+cosC\right)+b\left(cosC+cosA\right)+c\left(cosA+cosB\right)=2p\)
4.\(\left(b+c\right)cosA+\left(a+c\right)cosB+\left(b+a\right)cosC=a+b+c\)
Giúp em bài này với ạ , em chưa nghĩ ra được cách làm
Chứng minh
\(\frac{tan^3a}{sin^2a}-\frac{1}{sina.cosa}+\frac{cot^3a}{cos^2a}=tan^3a+cot^3a\)
Cho a,b,c>0. Chứng minh rằng:
\(\frac{b^3}{a^2\left(a^3+2b^3\right)}+\frac{c^3}{b^2\left(b^3+2c^3\right)}+\frac{a^3}{c^2\left(c^3+2a^3\right)}\ge\frac{1}{3}\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\).
Sina / [sina + cosa × tan (a/2)]
1.Rút gọn P= sin4x + cos4x ta được a - b/c.sin22x. Tinh a+3b+c.
2. Chứng minh: sin(A-B)/sinC = (a2-b2)/c2 (a;b;c là 3 cạnh của tam giác)
3. Nhận dạng tam giác biết rằng :
a) sinA = (cosA+cosB)/ (sinB+sinC)
b) 2sinBsinC = 1 + cosA
cho a,b,c >0; abc=1.chứng minh
\(\frac{1}{a^3\left(b+c\right)}+\frac{1}{b^3\left(c+a\right)}+\frac{1}{c^3\left(a+b\right)}\ge\frac{3}{2}\)
Give the quadrilateral ABCD. \(A_1,B_1,C_1,D_1\) is the center of the circle circumscribed to the triangle BCD, CDA, DAB, ABC. \(A_2,B_2,C_2,D_2\) is the center of the circle circumscribed to the triangle \(B_1C_1D_1,C_1D_1A_1,D_1A_1B_1,A_1B_1C_1\). Prove that : \(\frac{S_{A_2B_2C_2D_2}}{S_{ABCD}}=\frac{\left(cotA+cotC\right)^2\left(cotB+cotD\right)^2}{16}\)