\(\frac{tan^3a}{sin^2a}-\frac{1}{sina.cosa}+\frac{cot^3a}{cos^2a}=\frac{1}{sin^2a}\left(tan^3a-tana+cot^3a.tan^2a\right)\)
\(=\frac{1}{sin^2a}\left(tan^3a-tana+cota\right)=\left(1+cot^2a\right)\left(tan^3a-tana+cota\right)\)
\(=tan^3a-tana+cota+cot^2a.tan^3a-cot^2a.tana+cot^3a\)
\(=tan^3a-tana+cota+tana-cota+cot^3a\)
\(=tan^3a+cot^3a\)