Chứng minh
\(\frac{\left(sina+cosa\right)^2-1}{cota-sina.cosa}=2tan^2a\)
1.Rút gọn P= sin4x + cos4x ta được a - b/c.sin22x. Tinh a+3b+c.
2. Chứng minh: sin(A-B)/sinC = (a2-b2)/c2 (a;b;c là 3 cạnh của tam giác)
3. Nhận dạng tam giác biết rằng :
a) sinA = (cosA+cosB)/ (sinB+sinC)
b) 2sinBsinC = 1 + cosA
Chứng minh
1.\(\frac{h_a}{h_b}=\frac{sinA}{sinB}\)
2.\(cotA+cotB+cotC\ge\sqrt{3}\)
3.\(\left(b^2-c^2\right)cosA=a\left(c.cosC-b.cosB\right)\)
4.\(a^2=b^2+c^2-4S.cotA\)
5.\(a^2+b^2\ge\frac{4S}{sinC}\)
chuyển thánh tích sina+sinb+sin(a+b)
rút gọn biểu thức \(\frac{sina+sin3a}{2cos4a}\)
Tìm tập giá trị của biểu thức f(A,B,C) = sinA + sinB + sinC- sinAsinBsinC với A, B, C là các góc của một tam giác
Bài 3: Cho tam giác ABC có AB= 8, BC= 5, AC=7. Tính:
a) sinA, độ dài trung tuyến AM, diện tích tam giác ABC.
b) Bán kính đường tròn ngoại tiếp, nội tiếp tam giác ABC.
c) Độ dài đường cao AH.
Chứng minh
1.\(tanA=\frac{abc}{R\left(b^2+c^2-a^2\right)}\)
2.\(h_a=\frac{a.sinB.sinC}{sin\left(B+C\right)}\)
3.\(a\left(cosB+cosC\right)+b\left(cosC+cosA\right)+c\left(cosA+cosB\right)=2p\)
4.\(\left(b+c\right)cosA+\left(a+c\right)cosB+\left(b+a\right)cosC=a+b+c\)
Câu 1: a/ Chứng minh rằng : \(\frac{sin2a+cosa}{2sina+1}=cosa\)
b/ Thu gọn biểu thức : P= \(\frac{\left(sin^4x-cos^4x\right)\left[\left(sinx+cosx\right)^2-1\right]}{1+cos4x}\)