Give the quadrilateral ABCD. \(A_1,B_1,C_1,D_1\) is the center of the circle circumscribed to the triangle BCD, CDA, DAB, ABC. \(A_2,B_2,C_2,D_2\) is the center of the circle circumscribed to the triangle \(B_1C_1D_1,C_1D_1A_1,D_1A_1B_1,A_1B_1C_1\). Prove that : \(\frac{S_{A_2B_2C_2D_2}}{S_{ABCD}}=\frac{\left(cotA+cotC\right)^2\left(cotB+cotD\right)^2}{16}\)