Lời giải:
Khai triển, BĐT cần chứng minh tương đương với
\(64(xy+yz+xz)-63xyz\geq 192\)
Không mất tính tổng quát, giả sử \(z=\max (x,y,z)\Rightarrow z\geq \frac{4}{3}\)
Đặt \(f(x,y,z)=64(xy+yz+xz)-63xyz\)
Ta sẽ chứng minh \(f(x,y,z)\geq f\left(\frac{x+y}{2},\frac{x+y}{2},z\right)\)
\(\Leftrightarrow 64(xy+yz+xz)-63xyz\geq 64\left [ \left ( \frac{x+y}{2} \right )^2+z(x+y) \right ]-63z\left ( \frac{x+y}{2} \right )^2\)
\(\Leftrightarrow \frac{64(x-y)^2}{4}\leq \frac{63z(x-y)^2}{4}\Leftrightarrow z\geq\frac{63}{64}\)
Điều này hiển nhiên đúng vì \(z\geq \frac{4}{3}>\frac{63}{64}\)
Bây giờ ta chỉ cần chỉ ra \(f\left(\frac{x+y}{2},\frac{x+y}{2},z\right)\geq 192\)
\(\Leftrightarrow 64\left [ \left ( \frac{x+y}{2} \right )^2+z(x+y) \right ]-63z\left ( \frac{x+y}{2} \right )^2\geq 192\)
\(\Leftrightarrow 64z(4-z)+16(4-z)^2-\frac{63}{4}z(4-z)^2\geq 192\Leftrightarrow 63z^3-312z^2+496z-256\leq 0\)
\(\Leftrightarrow (3z-4)^2(7z-16)\leq 0\Leftrightarrow z\leq \frac{16}{7}\)
BĐT trên đúng vì \(x,y>1\Rightarrow z=4-x-y<2<\frac{16}{7}\)
Do đó \(f(x,y,z)\geq f\left(\frac{x+y}{2},\frac{x+y}{2},z\right)\geq 192\)
Chứng minh hoàn tất. Dấu bằng xảy ra khi \(x=y=z=\frac{4}{3}\)