Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Hải Anh

Giải hpt:

\(\left\{\begin{matrix}x^2+y^2-2\left(x+y\right)=0\\y^2+z^2-2\left(y+z\right)=0\\z^2+x^2-2\left(z+x\right)=0\end{matrix}\right.\)

Akai Haruma
31 tháng 1 2017 lúc 23:01

Lời giải:

Ta có \(\left\{\begin{matrix} x^2+y^2-2(x+y)=0\\ y^2+z^2-2(y+z)=0\\ z^2+x^2-2(z+x)=0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} (x-1)^2+(y-1)^2=2\\ (y-1)^2+(z-1)^2=2\\ (x-1)^2+(z-1)^2=2\end{matrix}\right.\)

\(\Rightarrow (x-1)^2+(y-1)^2+(z-1)^2=3\)

Do đó suy ra \(\left\{\begin{matrix} (x-1)^2=1\\ (y-1)^2=1\\ (z-1)^2=1\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x=0,2\\ y=0,2\\ z=0,2\end{matrix}\right.\)

Vậy bộ nghiệm của HPT là :

\((0,0,0),(2,2,2),(0,0,2),(0,2,0),(2,0,0),(2,2,0),(2,0,2),(0,2,2)\)


Các câu hỏi tương tự
Hải Anh
Xem chi tiết
lê thị tiều thư
Xem chi tiết
lê thị tiều thư
Xem chi tiết
Hải Anh
Xem chi tiết
sakura
Xem chi tiết
Trịnh Trọng Khánh
Xem chi tiết
Hải Anh
Xem chi tiết
Hải Anh
Xem chi tiết
Trương Nguyệt Băng Băng
Xem chi tiết