a: Ta có: \(\sqrt{\left(x+2\right)^2}=4\)
\(\Leftrightarrow\left|x+2\right|=4\)
\(\Leftrightarrow\left[{}\begin{matrix}x+2=4\\x+2=-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-6\end{matrix}\right.\)
b: Ta có: \(\sqrt{x^2+10x+25}=1\)
\(\Leftrightarrow\left|x+5\right|=1\)
\(\Leftrightarrow\left[{}\begin{matrix}x+5=1\\x+5=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-4\\x=-6\end{matrix}\right.\)
a. \(\sqrt{\left(x+2\right)^2}=4\)
<=> x + 2 = 4
<=> x = 4 - 2
<=> x = 2
c. \(\sqrt{x^2-2x+1}=3\)
<=> \(\sqrt{\left(x-1\right)^2}=3\)
<=> x - 1 = 3
<=> x = 3 + 1
<=> x = 4
b. \(\sqrt{x^2+10x+25}=1\)
<=> \(\sqrt{\left(x+5\right)^2}=1\)
<=> x + 5 = 1
<=> x = 1 - 5
<=> x = -4
d. \(2\sqrt{x^4=6}\)
<=> 2x2 = 6
<=> x2 = 3
<=> x = \(\sqrt{3}\)