a, Chứng minh: E M F ^ = 60 0 => ΔMEF đều => EF = 10cm
b, Tìm được: S M E F = 25 3 cm
a, Chứng minh: E M F ^ = 60 0 => ΔMEF đều => EF = 10cm
b, Tìm được: S M E F = 25 3 cm
Cho đường tròn (O; R) đường kính BC và một điểm A nằm trên đường tròn sao
cho AB = R. Gọi H là trung điểm của dây cung AC.
a) Tính số đo các góc của tam giác ABC.
b) Qua C vẽ tiếp tuyến của đường tròn (O) cắt tia OH tại D. Chứng minh DA là tiếp
tuyến của đường tròn (O).
c) Tính độ dài bán kính của đường tròn ngoại tiếp tam giác ACD theo R.
d) Trên tia đối của tia AC lấy điểm M, từ M vẽ hai tiếp tuyến ME và MF với đường
tròn (O) tại E và F. Chứng minh ba điểm D, E, F thẳng hàng.
Cho đường tròn (O). Từ một điểm M ở ngoài (O), vẽ hai tiếp tuyến MA và MB (A, B là tiếp điểm) sao cho góc A M B ^ = 60 0 . Biết chu vi tam giác MAB là 18 cm, tính độ dài dây AB
Cho đường tròn (O; 3cm) và điểm M nằm ngoài đường tròn sao cho OM = 5cm. Kẻ tiếp tuyến MB với đường tròn (O) ( B là tiếp điểm ). Từ B kẻ đường thẳng vuông góc MO tại N cắt đường tròn (O) tại C.
a) CM: MC là tiếp tuyến của đường tròn (O).
b) Tính độ dài MN và NO.
c) Qua điểm A trên cung nhỏ BC kẻ tiếp tuyến với đường tròn (O), tiếp tuyến này cắt MB, MC lần lượt tại D và E. Tính chu vi tam giác MED.
d) Tính diện tích tứ giác MBOC.
Cho đường tròn (O) . Tuwd một điểm M ở ngoài (O) , vẽ hai tiếp tuyến MA và MB(A,B là hai tiếp điểm ) sao cho góc AMB=60 độ. Biết chu vi tam giác MAB là 18cm, tính diện tích tứ giác OAMB.
Cho đường tròn (O;R) đường kính AB. Trên tiếp tuyến tại A của (O;R) lấy điểm C sao cho AC = 2R. Gọi D là giao điểm của BC và đường tròn (O)
a) CM: AD là đường cao và cũng là đường trung tuyến của ΔABC
b) Vẽ dây cung AE vuông góc với OC tại H. CM:CE là tiếp tuyến của đường tròn (O;R)
c) Đường thẳng BE cắt đường thẳng OD tại F. Tính tanOBF và suy ra số độ của góc OFB
d) Gọi K là hình chiếu của điểm E xuống AB, M là giao điểm của EK với BC. Tính độ dài các đoạn thẳng ME và MK theo R
Cho (O) có hai đường kính AB và CD vuông góc với nhau. Trên đường kính AB lấy điểm E sao cho AE=R. căn2 . Vẽ dây CF đi qua E . Tiếp tuyến của đường tròn tại F cắt CD tại M , vẽ dây AF cắt CD tại N. CMR: a) MF // AC b) MN, OD, OM là độ dài 3 cạnh của một tam giác
cho đường tròn tâm O và điểm A nằm ngoài đường tròn (O). Từ A kẻ đường thẳng (d) vuông góc với AO.M là điểm trên d, từ M kẻ hai tiếp tuyến ME và MF đến (O) E,F là hai tiếp điểm. MF cắt AE,AO thứ tự tại K và I
a) chứng minh năm điểm A,M,E,O,F cùng thuộc 1 đg tròn
Cho đường tròn (O;R) và điểm A nằm ngoài đường tròn . Từ A kẻ tiếp tuyến AE đến đường tròn (O) (với E là tiếp điểm) . Vẽ dây EH vuông góc với AO tại M.
a) Cho biết bán kính R`=5cm`; OM`=3cm`. Tính độ dài dây EH
b) Chứng minh AH là tiếp tuyến của đường tròn (O)
c) Đường thẳng qua O vuông góc với OA cắt AH tại B . Vẽ tiếp tuyến BF với đường tròn (O) (F là tiếp điểm) . Chứng minh 3 điểm E,O,F thẳng hàng và BF.AE`=R^2`
* vẽ hình và làm bài trên
Cho ( O;R ) có dây BC cố định , gọi d là đường thằng qua O và vuông góc với BC ; tiếp tuyến B tại ( O ) cắt đường thẳng d tại A . Gọi M là điểm bất kì thuộc cung nhỏ BC ; từ M kẻ MD , ME , MF theo thứ tự vuông góc với AB , BC , CA tại D , E , F
a . Chứng minh AC là tiếp tuyến ( O;R ) và MDBE , MECF là các tứ giác nội tiếp
b . Cho BC = R\(\sqrt{3}\). Tính diện tích hình viên phân tạo thành bởi cung nhỏ BC và dây BC
c . Chứng minh ME2 = MD.MF
d . Gọi P là giao điểm của MB và DE , Q là giao điểm của MC và EF . Đường tròn ngoại tiếp tam giác MDP cắt đường tròn ngoại tiếp tam giác MFQ tại điểm thứ hai là N . Chứng minh rằng đường thẳng MN đi qua trung điểm BC