Toán

Phuongdungnguyen Nguyen
Xem chi tiết
qwerty
15 tháng 3 2017 lúc 21:08

a) Một cách khác để cm BĐT tam giác:

A B C H

∆ABC có cạnh BC lớn nhất nên chân đường cao kẻ từ A phải nằm giữa B và C

=> HB + HC = BC

∆AHC vuông tại H => HC < AC

∆AHB vuông tại H => HB < AB

Cộng theo vế hai bất đẳng thức ta có:

HB + HC < AC + AB

Hay BC < AC + AB.

b) CMR: PM + PN > 2 PI:

M N P I Q

Trên tia PI lấy Q sao cho PI = QI
Xét ΔMIQ và ΔNIP có :
+ PI = QI (cách vẽ)
+ \(\widehat{I_1}=\widehat{I_2}\) (đối đỉnh)
+ MI = NI (gt)
=> ΔMIQ = ΔNIP (c-g-c)
=> PN = QM
Áp dụng bất đẳng thức trong tam giác đối với ΔMPQ Ta có: MP+MQ>PQ ⇒ PM+PN>PI+QI ⇒ PM+PN>2PI

Bình luận (1)
Quách Phú Đạt
Xem chi tiết
Akai Haruma
1 tháng 3 2017 lúc 13:02

Lời giải:
Trước tiên ta đi cm bất đẳng thức sau: với \(a,b>0\) thì \(a^3+b^3\geq ab(a+b)\)

BĐT đúng vì nó tương đương với \((a-b)^2(a+b)\geq 0\) ( luôn đúng)

Do đó:, kết hợp với \(abc=1\Rightarrow \)\(\frac{1}{a^3+b^3+abc}\leq \frac{1}{ab(a+b+c)}=\frac{c}{a+b+c}\)

Tương tự với các phân thức còn lại và cộng theo vế:

\(\Rightarrow \text{VT}\leq \frac{a+b+c}{a+b+c}=1=\frac{1}{abc}\) (đpcm)

Dấu bằng xảy ra khi \(a=b=c=1\)

Bình luận (0)
soyeon_Tiểubàng giải
1 tháng 3 2017 lúc 13:09

Có: \(\left(a-b\right)^2\ge0\Rightarrow\left(a-b\right)^2.\left(a+b\right)\ge0\Leftrightarrow a^3+b^3-ab\left(a+b\right)\ge0\)

\(\Leftrightarrow a^3+b^3\ge ab\left(a+b\right)\Leftrightarrow a^3+b^3+abc\ge ab\left(a+b+c\right)\)

\(\Rightarrow\frac{1}{a^3+b^3+abc}\le\frac{1}{ab\left(a+b+c\right)}\)

TT: \(\frac{1}{b^3+c^3+abc}\le\frac{1}{bc\left(a+b+c\right)}\)

\(\frac{1}{c^3+a^3+abc}\le\frac{1}{ca\left(a+b+c\right)}\)

Cộng vế với vế ta được:

\(\frac{1}{a^3+b^3+abc}+\frac{1}{b^3+c^3+abc}+\frac{1}{c^3+a^3+abc}\le\frac{1}{a+b+c}\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)\)

\(\le\frac{1}{a+b+c}.\frac{c+a+b}{abc}=\frac{1}{abc}\left(đpcm\right)\)

Bình luận (0)
Kuro Kazuya
1 tháng 3 2017 lúc 13:12

Áp dụng bất đẳng thức Cauchy cho 2 bộ số thực không âm

\(\Rightarrow\left\{\begin{matrix}a^2+b^2\ge2ab\\b^2+c^2\ge2bc\\c^2+a^2\ge2ca\end{matrix}\right.\)

\(\Rightarrow\left\{\begin{matrix}a^2-ab+b^2\ge ab\\b^2-bc+c^2\ge bc\\c^2-ca+a^2\ge ca\end{matrix}\right.\)

\(\Rightarrow\left\{\begin{matrix}\left(a+b\right)\left(a^2-ab+b^2\right)\ge ab\left(a+b\right)\\\left(b+c\right)\left(b^2-bc+c^2\right)\ge bc\left(b+c\right)\\\left(c+a\right)\left(c^2-ca+a^2\right)\ge ca\left(c+a\right)\end{matrix}\right.\)

Áp dụng hẳng đẳng thức tổng 2 lập phương

\(\Rightarrow\left\{\begin{matrix}a^3+b^3\ge ab\left(a+b\right)\\b^3+c^3\ge bc\left(b+c\right)\\c^3+a^3\ge ca\left(c+a\right)\end{matrix}\right.\)

\(\Rightarrow\left\{\begin{matrix}a^3+b^3+abc\ge ab\left(a+b\right)+abc\\b^3+c^3+abc\ge bc\left(b+c\right)+abc\\c^3+a^3+abc\ge ca\left(c+a\right)+abc\end{matrix}\right.\)

\(\Rightarrow\left\{\begin{matrix}a^3+b^3+abc\ge ab\left(a+b+c\right)\\b^3+c^3+abc\ge bc\left(a+b+c\right)\\c^3+a^3+abc\ge ca\left(a+b+c\right)\end{matrix}\right.\)

\(\Rightarrow\left\{\begin{matrix}\dfrac{1}{a^3+b^3+abc}\le\dfrac{1}{ab\left(a+b+c\right)}=\dfrac{abc}{ab\left(a+b+c\right)}\\\dfrac{1}{b^3+c^3+abc}\le\dfrac{1}{bc\left(a+b+c\right)}=\dfrac{abc}{bc\left(a+b+c\right)}\\\dfrac{1}{c^3+a^3+abc}\le\dfrac{1}{ca\left(a+b+c\right)}=\dfrac{abc}{ca\left(a+b+c\right)}\end{matrix}\right.\)

\(\Rightarrow VT\le\dfrac{abc}{ab\left(a+b+c\right)}+\dfrac{abc}{bc\left(a+b+c\right)}+\dfrac{abc}{ca\left(a+b+c\right)}\)

\(\Rightarrow VT\le\dfrac{c}{a+b+c}+\dfrac{a}{a+b+c}+\dfrac{b}{a+b+c}\)

\(\Rightarrow VT\le\dfrac{a+b+c}{a+b+c}=1\)

\(\Leftrightarrow VT\le\dfrac{1}{abc}\)

\(\Leftrightarrow\dfrac{1}{a^3+b^3+abc}+\dfrac{1}{b^3+c^3+abc}+\dfrac{1}{c^3+a^3+abc}\le\dfrac{1}{abc}\)

\(\Rightarrow\) ( đpcm )

Bình luận (0)
Như
Xem chi tiết
Akai Haruma
28 tháng 2 2017 lúc 21:06

Lời giải:

a) Với \(m=0\) phương trình trở thành:

\((x^2-2x-3)(x^2-2x+3)=0\Leftrightarrow (x-3)(x+1)(x^2-2x+3)=0\)

\(\Rightarrow\left[\begin{matrix}x-3=0\\x+1=0\\x^2-2x+3=0\end{matrix}\right.\) \(\Leftrightarrow \) \(\left[\begin{matrix}x=3\\x=-1\\\left(x-1\right)^2+2=0\left(vl\right)\end{matrix}\right.\)

Vậy \(x\in \left\{-1,3\right\}\)

b) Để PT có $4$ nghiệm phân biết thì phương trình \(x^2-2x+2m+3=0\) phải có hai nghiệm phân biệt khác \(-1\)\(3\)

Tức là \(\left\{\begin{matrix} \Delta' =1-(2m+3)>0\\ 3^2-2.3+2m+3\neq 0\\ (-1)^2-2(-1)+2m+3\neq 0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} m<-1\\ m\neq -3\\ \end{matrix}\right.\)

c) Áp dụng định lý Viet cho PT \(x^2-2x+2m+3=0\) có nghiệm thỏa mãn:\(\left\{\begin{matrix}x_3+x_4=2\\x_3x_4=2m+3\end{matrix}\right.\)

\(A=x_1x_2x_3x_4=-3x_3x_4=-3(2m+3)\)

Ta có với mọi \(x_3,x_4\in\mathbb{R}\) thì đều có \(x_3x_4\leq \left(\frac{x_3+x_4}{2}\right)^2=1\)

\(\Rightarrow -3x_3x_4\geq -3\) (khi nhân với số âm thì đổi dấu)

\(\Rightarrow A_{\min }=-3\Leftrightarrow m=-1\)

Câu b với c không liên quan đến nhau phải không? Nếu không thì không tìm được min đâu.

Bình luận (3)
Như
28 tháng 2 2017 lúc 15:56

sửa đề: pt \(\left(x^2-2x-3\right)\left(x^2-2x+2m+3\right)=0\)

Bình luận (0)
Hải Anh
Xem chi tiết
Akai Haruma
27 tháng 2 2017 lúc 0:41

Lời giải:

Từ các điều kiện đề bài suy ra :

\(M=2x+z+15=2x+60-x+15=x+75\)

\(x+7y=50\Rightarrow x=50-7y\leq 50\) (do \(y\geq 0\) )

\(\Rightarrow M_{\max}=125\)

Dấu bằng xảy ra khi \((x,y,z,t)=(50,0,10,15)\)

Bình luận (0)
Lê Thanh Phụng
28 tháng 2 2017 lúc 9:33

123456

Bình luận (0)
Linh Mà
28 tháng 2 2017 lúc 20:07

M=2x+z+15=2x+60-x+15=x+75

x+7y=50 suy ra x=50-7y bé hơn hoặc bằng 50(do y lớn hơn hoặc bằng 0)

suy ra GTLL của M=125.

Dấu "=" xảy ra khi (x,y,z,t)=(50,0,10,15)

Bình luận (0)
hiền nguyễn thị thúy
Xem chi tiết
Nhật Minh
6 tháng 6 2017 lúc 20:32

Đế sai . 1 phải là 2017

Bình luận (0)
Kha Huynh
Xem chi tiết
Akai Haruma
26 tháng 2 2017 lúc 20:09

Cái này chỉ cần xét hoành độ giao điểm thôi.

PT : \(x^4-7x^2-6-x^3+13x=0\)

\(\Leftrightarrow (x-1)^2(x-2)(x+3)=0\)

\(\Rightarrow\left[\begin{matrix}x=1\\x=2\\x=-3\end{matrix}\right.\Rightarrow\left[\begin{matrix}y=-12\\y=-18\\y=12\end{matrix}\right.\)

PT hoành độ giao điểm có ba nghiệm phân biệt nên số điểm chung là $3$

Bình luận (1)
nguyễn khôi nguyên
1 tháng 3 2017 lúc 17:40

bai hay day

Bình luận (1)
NgọA Hổ
Xem chi tiết
Vũ Minh Hiếu
23 tháng 2 2017 lúc 21:52

Mình giải giúp b câu 1 này

Ở phần mẫu bạn biến đổi \(cos^2xsin^2x=\frac{1}{4}\left(4cos^2xsin^2x\right)=\frac{1}{4}sin^22x\)

Đặt t = sin2x => \(d\left(t\right)=2cos2xdx\)

Đổi cận \(x=\frac{\pi}{4}=>t=1\) \(x=\frac{\pi}{3}=>t=\frac{\sqrt{3}}{2}\)

Ta có biểu thức trên sau khi đổi biến và cận

\(\int\limits^{\frac{\sqrt{3}}{2}}_1\frac{\frac{1}{2}dt}{\frac{1}{4}t^2}=\int\limits^{\frac{\sqrt{3}}{2}}_1\frac{2}{t^2}dt=\left(-\frac{2}{t}\right)\)lấy cận từ 1 đến \(\frac{\sqrt{3}}{2}\) \(=-\frac{2}{\frac{\sqrt{3}}{2}}-\left(-\frac{2}{1}\right)=2-4\frac{\sqrt{3}}{3}\) => a=2 và b=-4/3 vậy A=2/3 nhé

Bình luận (0)
Akai Haruma
26 tháng 2 2017 lúc 18:43

Câu 1)

Ta có:

\(I=\int ^{\frac{\pi}{3}}_{\frac{\pi}{4}}\frac{\cos 2x}{\cos^2 x\sin^2 x}dx=\int ^{\frac{\pi}{3}}_{\frac{\pi}{4}}\frac{\cos^2x-\sin ^2x}{\cos^2 x\sin^2 x}dx\)

\(=\int ^{\frac{\pi}{3}}_{\frac{\pi}{4}}\frac{dx}{\sin^2 x}-\int ^{\frac{\pi}{3}}_{\frac{\pi}{4}}\frac{dx}{\cos ^2x}=-\int ^{\frac{\pi}{3}}_{\frac{\pi}{4}}d(\cot x)-\int ^{\frac{\pi}{3}}_{\frac{\pi}{4}}d(\tan x)\)

\(=-\left ( \frac{\sqrt{3}}{3}-1 \right )-(\sqrt{3}-1)=2-\frac{4}{3}\sqrt{3}\Rightarrow a+b=\frac{2}{3}\)

Bình luận (0)
Akai Haruma
26 tháng 2 2017 lúc 19:28

Câu 2)

\(I=\underbrace{\int ^{\frac{\pi}{2}}_{0}\sin ^2xdx}_{A}+\underbrace{\int ^{\frac{\pi}{2}}_{0}\frac{\sin x\cos 2xdx}{\sqrt{1+3\cos x}}}_{B}\)

\(A=\int ^{\frac{\pi}{2}}_{0}\frac{1-\cos 2x}{2}dx=\)\(\left.\begin{matrix} \frac{\pi}{2}\\ 0\end{matrix}\right|\left ( \frac{x}{2}-\frac{\sin 2x}{4} \right )=\frac{\pi}{4}\)

\(B=-\int ^{\frac{\pi}{2}}_{0}\frac{(2\cos ^2x-1)d(\cos x)}{\sqrt{1+3\cos x}}\). Ta đặt \(\sqrt{1+3\cos x}=t\)

\(B=B=\int ^{2}_{1}\frac{\left [ \frac{2(t^2-1)^2}{9}-1\right ]d\left ( \frac{t^2-1}{3} \right )}{t}=\frac{2}{27}\int ^{2}_{1}\left ( 2t^4-4t^2-7 \right )dt\)

\(=\left.\begin{matrix} 2\\ 1\end{matrix}\right|\frac{2}{27}\left ( \frac{2t^5}{5}-\frac{4t^3}{3}-7t \right )=\frac{-118}{405}\)

\(\left\{\begin{matrix} a=\frac{1}{4}\\ b=-118\\ c=405\end{matrix}\right.\Rightarrow a+b+c=287,25\)

Bài này mà ngồi trong phòng thi mà giải tay thì chết cmnr. Bạn lên youtube xem anh theluc giải bằng casio cho nhanh.

Bình luận (0)
Quách Phú Đạt
Xem chi tiết
Kuro Kazuya
23 tháng 2 2017 lúc 1:32

Xét: \(\frac{1-x^2}{x+yz}+\frac{1-y^2}{y+xz}+\frac{1-z^2}{z+xy}\)

Thay thế \(x+y+z=1\)

\(\Leftrightarrow\frac{\left(x+y+z\right)^2-x^2}{x\left(x+y+z\right)+yz}+\frac{\left(x+y+z\right)^2-y^2}{y\left(x+y+z\right)+xz}+\frac{\left(x+y+z\right)^2-z^2}{z\left(x+y+z\right)+xy}\)

Áp dụng hằng đẳng thức hiệu 2 bình phương: \(a^2-b^2=\left(a-b\right)\left(a+b\right)\)

\(\Leftrightarrow\frac{\left(y+z\right)\left(2x+y+z\right)}{x^2+xy+xz+yz}+\frac{\left(x+z\right)\left(x+2y+z\right)}{xy+y^2+yz+xz}+\frac{\left(x+y\right)\left(x+y+2z\right)}{xz+zy+z^2+xy}\)

\(\Leftrightarrow\frac{\left(y+z\right)\left(2x+y+z\right)}{\left(x+y\right)\left(x+z\right)}+\frac{\left(x+z\right)\left(x+2y+z\right)}{\left(x+y\right)\left(y+z\right)}+\frac{\left(x+y\right)\left(x+y+2z\right)}{\left(x+z\right)\left(y+z\right)}\)

Áp dụng bất đẳng thức Cauchy cho 2 bộ số thực không âm

\(\Rightarrow\left\{\begin{matrix}\left(x+y\right)\left(x+z\right)\le\left(\frac{2x+y+z}{2}\right)^2=\frac{\left(2x+y+z\right)^2}{4}\\\left(x+y\right)\left(y+z\right)\le\left(\frac{x+2y+z}{2}\right)^2=\frac{\left(x+2y+z\right)^2}{4}\\\left(x+z\right)\left(y+z\right)\le\left(\frac{x+y+2z}{2}\right)^2=\frac{\left(x+y+2z\right)^2}{4}\end{matrix}\right.\)

\(\Rightarrow\left\{\begin{matrix}\frac{\left(y+z\right)\left(2x+y+z\right)}{\left(x+y\right)\left(x+z\right)}\ge\frac{4\left(y+z\right)\left(2x+y+z\right)}{\left(2x+y+z\right)^2}=\frac{4\left(y+z\right)}{2x+y+z}\\\frac{\left(x+z\right)\left(x+2y+z\right)}{\left(x+y\right)\left(y+z\right)}\ge\frac{4\left(x+z\right)\left(x+2y+z\right)}{\left(x+2y+z\right)^2}=\frac{4\left(x+z\right)}{x+2y+z}\\\frac{\left(x+y\right)\left(x+y+2z\right)}{\left(x+z\right)\left(y+z\right)}\ge\frac{4\left(x+y\right)\left(x+y+2z\right)}{\left(x+y+2z\right)^2}=\frac{4\left(x+y\right)}{x+y+2z}\end{matrix}\right.\)

\(\Rightarrow VT\ge\frac{4\left(y+z\right)}{2x+y+z}+\frac{4\left(x+z\right)}{x+2y+z}+\frac{4\left(x+y\right)}{x+y+2z}\)

\(\Rightarrow VT\ge4\left(\frac{y+z}{2x+y+z}+\frac{x+z}{x+2y+z}+\frac{x+y}{x+y+2z}\right)\)

Ta có: \(x+y+z=1\)

\(\Rightarrow\left\{\begin{matrix}y+z=1-x\\x+z=1-y\\x+y=1-z\end{matrix}\right.\) ( 1 )

\(\Rightarrow\left\{\begin{matrix}2x+y+z=1+x\\x+2y+z=1+y\\x+y+2z=1+z\end{matrix}\right.\) ( 2 )

Từ ( 1 ) và ( 2 )

\(\Rightarrow VT\ge4\left(\frac{1-x}{1+x}+\frac{1-y}{1+y}+\frac{1-z}{1+z}\right)\)

\(\Rightarrow VT\ge4\left(\frac{1+x-2x}{1+x}+\frac{1+y-2y}{1+y}+\frac{1+z-2z}{1+z}\right)\)

\(\Rightarrow VT\ge4\left[3-\left(\frac{2x}{1+x}+\frac{2y}{1+y}+\frac{2z}{1+z}\right)\right]\)

\(\Rightarrow VT\ge12-4\left(\frac{2x}{1+x}+\frac{2y}{1+y}+\frac{2z}{1+z}\right)\)

Chứng minh rằng \(12-4\left(\frac{2x}{1+x}+\frac{2y}{1+y}+\frac{2z}{1+z}\right)\ge6\)

\(\Leftrightarrow4\left(\frac{2x}{1+x}+\frac{2y}{1+y}+\frac{2z}{1+z}\right)\le6\)

\(\Leftrightarrow\frac{2x}{1+x}+\frac{2y}{1+y}+\frac{2z}{1+z}\le\frac{3}{2}\)

\(\Leftrightarrow\frac{x}{1+x}+\frac{y}{1+y}+\frac{z}{1+z}\le\frac{3}{4}\)

\(\Leftrightarrow\frac{1+x-1}{1+x}+\frac{1+y-1}{1+y}+\frac{1+z-1}{1+z}\le\frac{3}{4}\)

\(\Leftrightarrow1-\frac{1}{1+x}+1-\frac{1}{1+y}+1-\frac{1}{1+z}\le\frac{3}{4}\)

\(\Leftrightarrow3-\left(\frac{1}{1+x}+\frac{1}{1+y}+\frac{1}{1+z}\right)\le\frac{3}{4}\)

Áp dụng bất đẳng thức cộng mẫu số

\(\Rightarrow\frac{1}{1+x}+\frac{1}{1+y}+\frac{1}{1+z}\ge\frac{\left(1+1+1\right)^2}{3+x+y+z}=\frac{9}{4}\)

\(\Rightarrow3-\left(\frac{1}{1+x}+\frac{1}{1+y}+\frac{1}{1+z}\right)\le3-\frac{9}{4}\)

\(\Rightarrow3-\left(\frac{1}{1+x}+\frac{1}{1+y}+\frac{1}{1+z}\right)\le\frac{3}{4}\) ( đpcm )

\(12-4\left(\frac{2x}{1+x}+\frac{2y}{1+y}+\frac{2z}{1+z}\right)\ge6\)

\(\Rightarrow VT\ge6\)

\(\Leftrightarrow\)\(\frac{1-x^2}{x+yz}+\frac{1-y^2}{y+xz}+\frac{1-z^2}{z+xy}\ge6\) ( đpcm )

Bình luận (0)
Akai Haruma
23 tháng 2 2017 lúc 2:20

Cách khác:

\(A=\frac{1-x^2}{x+yz}+\frac{1-y^2}{y+xz}+\frac{1-z^2}{z+xy}=\frac{1-x^2}{x(x+y+z)+yz}+\frac{1-y^2}{y(x+y+z)+xz}+\frac{1-z^2}{z(x+y+z)+xy}\)

\(\Leftrightarrow A=\frac{1-x^2}{(x+y)(x+z)}+\frac{1-y^2}{(y+z)(y+x)}+\frac{1-z^2}{(z+x)(z+y)}=\frac{2(x+y+z)-[xy(x+y)+yz(y+z)+xz(x+z)]}{(x+y)(y+z)(x+z)}\)

\(A\geq 6\Leftrightarrow 2-[xy(x+y)+yz(y+z)+xz(x+z)]\ge 6(x+y)(y+z)(x+z)\)

\(\Leftrightarrow 2+9xyz\geq 7(x+y+z)(xy+yz+xz)\)

\(\Leftrightarrow 2+9xyz\geq 7(xy+yz+xz)\) \((\star)\)

Theo BĐT Schur bậc 3 kết hợp AM-GM:

\(xyz\geq (x+y-z)(y+z-x)(x+z-y)=(1-2x)(1-2y)(1-2z)\)

\(\Leftrightarrow 9xyz\geq 4(xy+yz+xz)-1\)

\(\Rightarrow 2+9(xy+yz+xz)\geq 1+4(xy+yz+xz)=(x+y+z)^2+4(xy+yz+xz)\)\(\geq 7(xy+yz+xz)\)

Do đó \((\star)\) được CM. Bài toán hoàn tất. Dấu bằng xảy ra khi \(x=y=z=\frac{1}{3}\)

Bình luận (0)
Như
Xem chi tiết
Akai Haruma
22 tháng 2 2017 lúc 21:49

Giải:

Áp dụng BĐT Cauchy-Schwarz:

\(\frac{1}{p-a}+\frac{1}{p-b}\geq \frac{4}{2p-a-b}=\frac{4}{c}\)

\(\frac{1}{p-b}+\frac{1}{p-c}\geq \frac{4}{2p-b-c}=\frac{4}{a}\)

\(\frac{1}{p-b}+\frac{1}{p-c}\geq \frac{4}{2p-b-c}=\frac{4}{a}\)

Cộng theo vế và thu gọn ta được \(\frac{1}{p-a}+\frac{1}{p-b}+\frac{1}{p-c}\geq 2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

Ta có đpcm

Dấu bằng xảy ra khi $a=b=c$

Bình luận (1)
Vuong Vuong
Xem chi tiết
Akai Haruma
22 tháng 2 2017 lúc 16:50

Lời giải:

\(A_1,A_2,A_3 \) là hình chiếu của \(A\) lên các mặt phẳng tọa độ nên :

\(\left\{\begin{matrix} A_1=(-1,2,0)\\ A_2=(-1,0,3)\\ A_3=(0,2,3)\end{matrix}\right.\Rightarrow \left\{\begin{matrix} \overrightarrow {A_1A_2}=(0,-2,3)\\ \overrightarrow {A_1A_3}=(1,0,3)\\ \end{matrix}\right.\)

Vector pháp tuyến của \((A_1A_2A_3):\overrightarrow{n_P}=[\overrightarrow {A_1A_2},\overrightarrow {A_1A_3}]=(-6,3,2)\)

Suy ra PTMP:

\(-6(x-0)+3(y-2)+2(z-3)=0\Leftrightarrow -6x+3y+2z-12=0\)

Bình luận (0)