Toán

Duong Thi Nhuong
Xem chi tiết
Đức Minh
8 tháng 3 2017 lúc 10:29

C1 : Áp dụng bất đẳng thức AM - GM ta có :

\(\sum\dfrac{a}{b+c-a}\ge3\sqrt[3]{\dfrac{abc}{\left(a+b-c\right)\left(b+c-a\right)\left(c+a-b\right)}}\ge3\)

Dấu = xảy ra khi và chỉ khi a = b = c.

C2 : Theo Cauchy Schwarz :

\(\sum \frac{a}{b+c-a}\geq \sum \frac{a^2}{ab+ac-a^2}\geq \frac{(a+b+c)^2}{2(ab+ca+bc)-a^2-b^2-c^2}\geq \frac{(a+b+c)^2}{\frac{2}{3}(a+b+c)^2-\frac{1}{3}(a+b+c)^2}=3\)

(đpcm).

Bình luận (2)
Lê Thiên Anh
8 tháng 3 2017 lúc 10:35

Đặt b+c-a=x, c+a-b=y, a+b-c=z thì 2a =y+z, 2b +x+z, 2c +x+y. Ta có:

\(\dfrac{2a}{b+c-a}+\dfrac{2b}{a+c-b}+\dfrac{2c}{a+b-c}\)

= \(\dfrac{y+z}{x}+\dfrac{x+z}{y}+\dfrac{x+y}{z}\)

=\(\left(\dfrac{y}{x}+\dfrac{x}{y}\right)+\left(\dfrac{z}{x}+\dfrac{x}{z}\right)+\left(\dfrac{z}{y}+\dfrac{y}{z}\right)\)(1)

\(\dfrac{x}{y}+\dfrac{y}{x}-2=\dfrac{x^2+y^2-2xy}{xy}=\dfrac{\left(x-y\right)^2}{xy}\ge0\)( vì xy >0)

\(\Rightarrow\)\(\dfrac{x}{y}+\dfrac{y}{x}\ge2\)(2)

Tương tự: \(\dfrac{z}{x}+\dfrac{x}{z}\ge2\)(3)

\(\dfrac{z}{y}+\dfrac{y}{z}\ge2\)(4)

Từ (1),(2),(3) và (4):

\(\Rightarrow\)\(\left(\dfrac{y}{x}+\dfrac{x}{y}\right)+\left(\dfrac{z}{x}+\dfrac{x}{z}\right)+\left(\dfrac{z}{y}+\dfrac{y}{z}\right)\)\(\ge6\)

Hay \(\dfrac{2a}{b+c-a}+\dfrac{2b}{a+c-b}+\dfrac{2c}{a+b-c}\) \(\ge6\)

Do đó: \(\dfrac{a}{b+c-a}+\dfrac{b}{a+c-b}+\dfrac{c}{a+b-c}\ge3\)(đpcm)

Bình luận (1)
Nguyen Manh Dat
12 tháng 3 2017 lúc 19:43

Bình luận (1)
Quốc Bảo
Xem chi tiết
Kuro Kazuya
7 tháng 3 2017 lúc 21:22

Áp dụng bất đẳng thức cộng mẫu số

\(\Rightarrow\dfrac{a^2}{a+\sqrt[3]{bc}}+\dfrac{b^2}{b+\sqrt[3]{ca}}+\dfrac{c^2}{c+\sqrt[3]{ab}}\ge\dfrac{\left(a+b+c\right)^2}{a+b+c+\sqrt[3]{bc}+\sqrt[3]{ca}+\sqrt[3]{ab}}\)

\(\Rightarrow\dfrac{a^2}{a+\sqrt[3]{bc}}+\dfrac{b^2}{b+\sqrt[3]{ca}}+\dfrac{c^2}{c+\sqrt[3]{ab}}\ge\dfrac{9}{3+\sqrt[3]{bc}+\sqrt[3]{ca}+\sqrt[3]{ab}}\)

Chứng minh rằng \(\dfrac{9}{3+\sqrt[3]{bc}+\sqrt[3]{ca}+\sqrt[3]{ab}}\ge\dfrac{3}{2}\)

\(\Leftrightarrow18\ge3\left(3+\sqrt[3]{bc}+\sqrt[3]{ca}+\sqrt[3]{ab}\right)\)

\(\Leftrightarrow18\ge9+3\sqrt[3]{bc}+3\sqrt[3]{ca}+3\sqrt[3]{ab}\)

\(\Leftrightarrow9\ge3\sqrt[3]{ab}+3\sqrt[3]{bc}+3\sqrt[3]{ca}\)

Áp dụng bất đẳng thức Cauchy cho 3 bộ số thực không âm

\(\Rightarrow\left\{{}\begin{matrix}a+b+1\ge3\sqrt[3]{ab}\\b+c+1\ge3\sqrt[3]{bc}\\c+a+1\ge3\sqrt[3]{ca}\end{matrix}\right.\)

\(\Rightarrow2\left(a+b+c\right)+3\ge3\sqrt[3]{ab}+3\sqrt[3]{bc}+3\sqrt[3]{ca}\)

\(\Rightarrow9\ge3\sqrt[3]{ab}+3\sqrt[3]{bc}+3\sqrt[3]{ca}\) ( đpcm )

\(\dfrac{9}{3+\sqrt[3]{bc}+\sqrt[3]{ca}+\sqrt[3]{ab}}\ge\dfrac{3}{2}\)

\(\dfrac{a^2}{a+\sqrt[3]{bc}}+\dfrac{b^2}{b+\sqrt[3]{ca}}+\dfrac{c^2}{c+\sqrt[3]{ab}}\ge\dfrac{9}{3+\sqrt[3]{bc}+\sqrt[3]{ca}+\sqrt[3]{ab}}\)

\(\Rightarrow\dfrac{a^2}{a+\sqrt[3]{bc}}+\dfrac{b^2}{b+\sqrt[3]{ca}}+\dfrac{c^2}{c+\sqrt[3]{ab}}\ge\dfrac{3}{2}\)( đpcm )

Bình luận (0)
Lightning Farron
8 tháng 3 2017 lúc 12:01

Áp dụng BĐT AM-GM và Cauchy-Schwarz ta có:

\(\sum\frac{a^2}{a+\sqrt[3]{bc}}\geq\sum\frac{a^2}{a+\frac{b+c+1}{3}}=\sum\frac{9a^2}{3(3a+b+c)+a+b+c}\)

\(=\sum\frac{9a^2}{10a+4b+4c}\geq\frac{9(a+b+c)^2}{(10a+4b+4c)}=\frac{9(a+b+c)^2}{18(a+b+c)}=\frac{3}{2}\)

Bình luận (0)
ARMY V BTS
8 tháng 3 2017 lúc 10:55


Với x,y,zx,y,z không âm thỏa mãn x≥y≥z≥0x≥y≥z≥0 thì ta có các chú ý sau:

1.xy+yz+xzx2+xz+z2≥y+zx+z1.xy+yz+xzx2+xz+z2≥y+zx+z


2.xy+yz+xzy2+yz+z2≥x+zy+z2.xy+yz+xzy2+yz+z2≥x+zy+z


3.xy+yz+xzx2+xy+y2≥(x+z)(y+z)(x+z)2+(x+z)(y+z)+(y+z)23.xy+yz+xzx2+xy+y2≥(x+z)(y+z)(x+z)2+(x+z)(y+z)+(y+z)2

.

Với những công cụ hỗ trợ này, ta có thể xử đẹp bài toán sau:

xy+yz+xzx2+xy+y2−−−−−−−−−−−√+xy+yz+xzy2+yz+z2−−−−−−−−−−−√+xy+yz+xzz2+zx+z2−−−−−−−−−−−√≥2+13–√
Bình luận (0)
Linh Miu Ly Ly
Xem chi tiết
1234thhc minhtoannmt
13 tháng 12 2017 lúc 19:09

\(MD^{^2}=4\)

Bình luận (0)
Xem chi tiết
Isolde Moria
7 tháng 3 2017 lúc 11:42

A B C D E O M H H'

a) và b) thì dễ rồi nhé !!!

c)

Gọi giao điểm của OM và BN là H'

Ta có : \(\widehat{MH'B}=\widehat{EMO}=45^0\)

Xét \(\Delta BMH'\)\(\Delta OCM\) có :

\(\widehat{H}=\widehat{C}\left(=45^0\right)\)

\(\widehat{BMH'}=\widehat{CMO}\) ( đối đỉnh )

=> \(\Delta BMH'\)~ \(\Delta OMC\) ( g . g )

Ta có tỉ số :

\(\dfrac{BM}{MH'}=\dfrac{OM}{MC}\)

Lại xét \(\Delta BMO\)\(\Delta H'MC\) có :

\(\dfrac{BM}{MH'}=\dfrac{OM}{MC}\)

\(\widehat{BMO}=\widehat{H'MC}\) ( đối đỉnh )

=> \(\Delta BMO\)~\(\Delta H'MC\) ( c . g . c )

=> \(\widehat{OBM}=\widehat{CH'M}=45^0\)

=> \(\widehat{BH'C}=90^0\)

=> H' trùng với H

=> đfcm

Bình luận (2)
qwerty
7 tháng 3 2017 lúc 9:20

Để c/m 3 điểm thẳng hàng bạn chứng minh \(\widehat{OMH}\) = 180o nhé! Mik ko đủ năng lực để c/m cái này.

Bình luận (5)

Đây là hình và cách làm câu a và b. Giúp mình câu c nhé :

Hình học lớp 8

Bình luận (4)
Đặng Thị Hông Nhung
Xem chi tiết
Nguyễn Ngô Minh Trí
20 tháng 1 2020 lúc 19:56

Cho tam giác ABC,dựng đường cao AH,Gọi M là trung điểm của BC,biết AH AM chia các góc ở đỉnh thành 3 góc bằng nhau,Tính các góc của tam giác ABC,Toán học Lớp 7,bài tập Toán học Lớp 7,giải bài tập Toán học Lớp 7,Toán học,Lớp 7

Bình luận (0)
 Khách vãng lai đã xóa
Nhâm Gia Nghĩa
Xem chi tiết
Kuro Kazuya
5 tháng 3 2017 lúc 0:26

\(2\left(\dfrac{b}{a}+\dfrac{c}{b}+\dfrac{a}{c}\right)\ge\dfrac{1+a}{1-a}+\dfrac{1+b}{1-b}+\dfrac{1+c}{1-c}\)

Thay thế \(a+b+c=1\)

\(\Leftrightarrow2\left(\dfrac{b}{a}+\dfrac{c}{b}+\dfrac{a}{c}\right)\ge\dfrac{2a+b+c}{b+c}+\dfrac{a+2b+c}{a+c}+\dfrac{a+b+2c}{a+b}\)

\(\Leftrightarrow2\left(\dfrac{b}{a}+\dfrac{c}{b}+\dfrac{a}{c}\right)\ge\dfrac{2a}{b+c}+\dfrac{2b}{a+c}+\dfrac{2c}{a+b}+3\)

\(\Leftrightarrow\dfrac{2b}{a}+\dfrac{2c}{b}+\dfrac{2a}{c}\ge\dfrac{2a}{b+c}+\dfrac{2b}{a+c}+\dfrac{2c}{a+b}+3\)

\(\Leftrightarrow\left(\dfrac{2b}{a}-\dfrac{2b}{a+c}\right)+\left(\dfrac{2c}{b}-\dfrac{2c}{a+b}\right)+\left(\dfrac{2a}{c}-\dfrac{2a}{b+c}\right)\ge3\)

\(\Leftrightarrow\dfrac{2bc}{a\left(a+c\right)}+\dfrac{2ca}{b\left(a+b\right)}+\dfrac{2ab}{c\left(b+c\right)}\ge3\)

\(\Leftrightarrow\dfrac{bc}{a\left(a+c\right)}+\dfrac{ca}{b\left(a+b\right)}+\dfrac{ab}{c\left(b+c\right)}\ge\dfrac{3}{2}\)

\(\Leftrightarrow\dfrac{\left(bc\right)^2}{abc\left(a+c\right)}+\dfrac{\left(ca\right)^2}{abc\left(a+b\right)}+\dfrac{\left(ab\right)^2}{abc\left(b+c\right)}\ge\dfrac{3}{2}\)

Áp dụng bất đẳng thức cộng mẫu số

\(\Rightarrow\dfrac{\left(bc\right)^2}{abc\left(a+c\right)}+\dfrac{\left(ca\right)^2}{abc\left(a+b\right)}+\dfrac{\left(ab\right)^2}{abc\left(b+c\right)}\ge\dfrac{\left(ab+bc+ca\right)^2}{abc\left(a+b+c+a+b+c\right)}=\dfrac{\left(ab+bc+ca\right)^2}{2abc}\)

Chứng minh rằng \(\dfrac{\left(ab+bc+ca\right)^2}{2abc}\ge\dfrac{3}{2}\)

\(\Leftrightarrow2\left(ab+bc+ca\right)^2\ge6abc\)

\(\Leftrightarrow\left(ab+bc+ca\right)^2\ge3abc\)

\(\Leftrightarrow a^2b^2+b^2c^2+c^2a^2+2ab^2c+2abc^2+2a^2bc\ge3abc\)

\(\Leftrightarrow a^2b^2+b^2c^2+c^2a^2+2abc\left(a+b+c\right)\ge3abc\)

\(\Leftrightarrow a^2b^2+b^2c^2+c^2a^2+2abc\ge3abc\)

\(\Leftrightarrow a^2b^2+b^2c^2+c^2a^2\ge abc\)

Áp dụng bất đẳng thức Cauchy cho 2 bộ số thực không âm

\(\Rightarrow\left\{{}\begin{matrix}a^2b^2+b^2c^2\ge2\sqrt{a^2b^4c^2}=2ab^2c\\b^2c^2+c^2a^2\ge2\sqrt{a^2b^2c^4}=2abc^2\\a^2b^2+c^2a^2\ge2\sqrt{a^4b^2c^2}=2a^2bc\end{matrix}\right.\)

\(\Leftrightarrow2\left(a^2b^2+b^2c^2+c^2a^2\right)\ge2abc\left(a+b+c\right)\)

\(\Leftrightarrow a^2b^2+b^2c^2+c^2a^2\ge abc\) ( đpcm )

\(\dfrac{\left(ab+bc+ca\right)^2}{2abc}\ge\dfrac{3}{2}\)

Vậy \(\dfrac{\left(bc\right)^2}{abc\left(a+c\right)}+\dfrac{\left(ca\right)^2}{abc\left(a+b\right)}+\dfrac{\left(ab\right)^2}{abc\left(b+c\right)}\ge\dfrac{3}{2}\)

\(\Leftrightarrow2\left(\dfrac{b}{a}+\dfrac{c}{b}+\dfrac{a}{c}\right)\ge\dfrac{1+a}{1-a}+\dfrac{1+b}{1-b}+\dfrac{1+c}{1-c}\)( đpcm )

Bình luận (0)
Minh Trinh
Xem chi tiết
Akai Haruma
4 tháng 3 2017 lúc 1:33

Lời giải:

Vì mặt phẳng đi qua $A$ nên có dạng
\((P):a(x-1)+b(y-2)+c(z-3)=0\)

Ta có \(\overrightarrow{AB}=(-3,-1,2)\). Vì PT mặt phẳng đi qua $A,B$ nên

\(\overrightarrow{n_P}=(a,b,c)\perp \overrightarrow{AB}\Rightarrow -3a-b+2c=0\) \((1)\)

\(d(C,(P))=2d(D,(P))\Leftrightarrow \frac{|a-3b-2c|}{\sqrt{a^2+b^2+c^2}}=\frac{2|-a+b-2c|}{\sqrt{a^2+b^2+c^2}}\)

\(\Leftrightarrow (a-3b-2c)^2=4(-a+b-2c)^2\) \((2)\)

Từ \((1)\) thay \(2c=3a+b\) vào \((2)\) và khai triển thu được: \(\left[{}\begin{matrix}b=\dfrac{3a}{2}\\b=\dfrac{-5a}{2}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}c=\dfrac{9a}{4}\\c=\dfrac{a}{4}\end{matrix}\right.\)

Do đó PTMP \(\left[{}\begin{matrix}a\left(x-1\right)+\dfrac{3}{2}a\left(y-2\right)+\dfrac{9}{4}a\left(z-3\right)=0\\a\left(x-1\right)-\dfrac{5}{2}a\left(y-2\right)+\dfrac{1}{4}a\left(z-3\right)=0\end{matrix}\right.\)

\(\leftrightarrow\left[{}\begin{matrix}4x+6y+9z-43=0\\4x-10y+z+13=0\end{matrix}\right.\)

Bình luận (0)
Nguyễn Huyền Trang
Xem chi tiết
Kiều Thu Hà
5 tháng 3 2017 lúc 9:46

banh

Bình luận (0)
Đỗ Việt Nhật
15 tháng 3 2017 lúc 10:30

banhdễ quá

haha ha ha

ngốc quá đihehe

Bình luận (1)
Nguyễn Huyền Trang
15 tháng 3 2017 lúc 16:56

thế thì ai làm đi ở dấy mà cười

Bình luận (5)
Neet
Xem chi tiết
Akai Haruma
2 tháng 3 2017 lúc 0:34

Bài 3)

BĐT cần chứng minh tương đương với:

\(\left ( \frac{a}{a+b} \right )^2+\left ( \frac{b}{b+c} \right )^2+\left ( \frac{c}{c+a} \right )^2\geq \frac{1}{2}\left ( 3-\frac{a}{a+b}-\frac{b}{b+c}-\frac{c}{c+a} \right )\)

Để cho gọn, đặt \((x,y,z)=\left (\frac{b}{a},\frac{c}{b},\frac{a}{c}\right)\) \(\Rightarrow xyz=1\).

BĐT được viết lại như sau:

\(A=2\left [ \frac{1}{(x+1)^2}+\frac{1}{(y+1)^2}+\frac{1}{(z+1)^2} \right ]+\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\geq 3\) \((\star)\)

Ta nhớ đến hai bổ đề khá quen thuộc sau:

Bổ đề 1: Với \(a,b>0\) thì \(\frac{1}{(a+1)^2}+\frac{1}{(b+1)^2}\geq \frac{1}{ab+1}\)

Cách CM rất đơn giản, Cauchy - Schwarz:

\((a+1)^2\leq (a+b)(a+\frac{1}{b})\Rightarrow \frac{1}{(a+1)^2}\geq \frac{b}{(a+b)(ab+1)}\)

Tương tự với biểu thức còn lại và cộng vào thu được đpcm

Bổ đề 2: Với \(x,y>0,xy\geq 1\) thì \(\frac{1}{x^2+1}+\frac{1}{y^2+1}\geq \frac{2}{xy+1}\)

Cách CM: Quy đồng ta có đpcm.

Do tính hoán vị nên không mất tổng quát giả sử \(z=\min (x,y,z)\)

\(\Rightarrow xy\geq 1\). Áp dụng hai bổ đề trên:

\(A\geq 2\left [ \frac{1}{xy+1}+\frac{1}{(z+1)^2} \right ]+\frac{2}{\sqrt{xy}+1}+\frac{1}{z+1}=2\left [ \frac{z}{z+1}+\frac{1}{(z+1)^2} \right ]+\frac{2\sqrt{z}}{\sqrt{z}+1}+\frac{1}{z+1}\)

\(\Leftrightarrow A\geq \frac{2(z^2+z+1)}{(z+1)^2}+\frac{1}{z+1}+2-\frac{2}{\sqrt{z}+1}\geq 3\)

\(\Leftrightarrow 2\left [ \frac{z^2+z+1}{(z+1)^2}-\frac{3}{4} \right ]+\frac{1}{z+1}-\frac{1}{2}-\left ( \frac{2}{\sqrt{z}+1}-1 \right )\geq 0\)

\(\Leftrightarrow \frac{(z-1)^2}{2(z+1)^2}-\frac{z-1}{2(z+1)}+\frac{z-1}{(\sqrt{z}+1)^2}\geq 0\Leftrightarrow (z-1)\left [ \frac{1}{(\sqrt{z}+1)^2}-\frac{1}{(z+1)^2} \right ]\geq 0\)

\(\Leftrightarrow \frac{\sqrt{z}(\sqrt{z}-1)^2(\sqrt{z}+1)(z+\sqrt{z}+2)}{(\sqrt{z}+1)^2(z+1)^2}\geq 0\) ( luôn đúng với mọi \(z>0\) )

Do đó \((\star)\) được cm. Bài toán hoàn tất.

Dấu bằng xảy ra khi \(a=b=c\)

P/s: Nghỉ tuyển lâu rồi giờ mới gặp mấy bài BĐT phải động não. Khuya rồi nên xin phép làm bài 3 trước. Hai bài kia xin khiếu. Nếu làm đc chắc tối mai sẽ post.

Bình luận (1)
Lightning Farron
2 tháng 3 2017 lúc 18:11

Bài 1:

Cho \(a=b=c=\dfrac{1}{\sqrt{3}}\). Khi đó \(M=\sqrt{3}-2\)

Ta sẽ chứng minh nó là giá trị nhỏ nhất

Thật vậy, đặt c là giá trị nhỏ nhất của a,b,c. Khi đó, ta cần chứng minh

\(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}-\frac{2(a^2+b^2+c^2)}{\sqrt{ab+ac+bc}}\geq(\sqrt3-2)\sqrt{ab+ac+bc}\)

\(\Leftrightarrow\sqrt{ab+ac+bc}\left(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}-\sqrt{3(ab+ac+bc)}\right)\geq2(a^2+b^2+c^2-ab-ac-bc)\)

\(\Leftrightarrow\frac{a^2}{b}+\frac{b^2}{a}-a-b+\frac{b^2}{c}+\frac{c^2}{a}-\frac{b^2}{a}-c+a+b+c-\sqrt{3(ab+ac+bc)}\geq\)

\(\geq2((a-b)^2+(c-a)(c-b))\)

\(\Leftrightarrow(a-b)^2\left(\frac{1}{a}+\frac{1}{b}-2\right)+(c-a)(c-b)\left(\frac{1}{a}+\frac{b}{ac}-2\right)+a+b+c-\sqrt{3(ab+ac+bc)}\geq0\)

Đúng bởi \(\frac{1}{a}+\frac{1}{b}-2>0;\frac{1}{a}+\frac{b}{ac}-2\geq\frac{1}{a}+\frac{1}{a}-2>0\)

\(a+b+c-\sqrt{3(ab+ac+bc)}=\frac{(a-b)^2+(c-a)(c-b)}{a+b+c+\sqrt{3(ab+ac+bc)}}\geq0\)

BĐT đã được c/m. Vậy \(M_{Min}=\sqrt{3}-2\Leftrightarrow a=b=c=\dfrac{1}{\sqrt{3}}\)

P/s: Nhìn qua thấy ngon mà làm mới thấy thật sự là "choáng"

Bình luận (3)
Hung nguyen
2 tháng 3 2017 lúc 10:57

Câu 1/ Ta có

\(ab+bc+ca\le\frac{\left(a+b+c\right)^2}{3}\)

\(\Leftrightarrow1\le\frac{\left(a+b+c\right)^2}{3}\)

\(\Leftrightarrow\left(a+b+c\right)^2\ge3\)

\(\Leftrightarrow\sqrt{3}\le a+b+c< 3\)

Ta có: \(M=\frac{a^2\left(1-2b\right)}{b}+\frac{b^2\left(1-2c\right)}{c}+\frac{c^2\left(1-2a\right)}{a}\)

\(=\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}-2\left(a^2+b^2+c^2\right)\)

\(\ge\frac{\left(a+b+c\right)^2}{a+b+c}-2\left(a^2+b^2+c^2\right)-4\left(ab+bc+ca\right)+4\left(ab+bc+ca\right)\)

\(=a+b+c-2\left(a+b+c\right)^2+4\) (1)

Đặt \(a+b+c=x\left(\sqrt{3}\le x< 3\right)\)

Ta tìm GTNN của hàm số: \(y=-2x^2+x+4\)

\(\Rightarrow y'=-4x+1=0\)

\(\Rightarrow x=\frac{1}{4}=0,25\)

Thế x lần lược các giá trị \(\left\{\begin{matrix}x=0,25\\x=\sqrt{3}\end{matrix}\right.\)

\(\Rightarrow\left\{\begin{matrix}y=4,125\\y=-2+\sqrt{3}\end{matrix}\right.\)

\(\Rightarrow y_{min}=-2+\sqrt{3}\) đạt cực trị tại \(x=\sqrt{3}\) (2)

Từ (1) và (2) ta suy ra GTNN của M là \(-2+\sqrt{3}\) tại \(a=b=c=\frac{1}{\sqrt{3}}\)

Bình luận (7)
Phuongdungnguyen Nguyen
Xem chi tiết
qwerty
15 tháng 3 2017 lúc 21:08

a) Một cách khác để cm BĐT tam giác:

A B C H

∆ABC có cạnh BC lớn nhất nên chân đường cao kẻ từ A phải nằm giữa B và C

=> HB + HC = BC

∆AHC vuông tại H => HC < AC

∆AHB vuông tại H => HB < AB

Cộng theo vế hai bất đẳng thức ta có:

HB + HC < AC + AB

Hay BC < AC + AB.

b) CMR: PM + PN > 2 PI:

M N P I Q

Trên tia PI lấy Q sao cho PI = QI
Xét ΔMIQ và ΔNIP có :
+ PI = QI (cách vẽ)
+ \(\widehat{I_1}=\widehat{I_2}\) (đối đỉnh)
+ MI = NI (gt)
=> ΔMIQ = ΔNIP (c-g-c)
=> PN = QM
Áp dụng bất đẳng thức trong tam giác đối với ΔMPQ Ta có: MP+MQ>PQ ⇒ PM+PN>PI+QI ⇒ PM+PN>2PI

Bình luận (1)