Bài 4. ÔN TẬP CHƯƠNG III

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Phuong Tran

Trong mặt phẳng toạ độ Oxy cho hai đường thẳng d1 : x + y − 1 = 0; d2 : 3x − y + 5 = 0 cắt
nhau tại A. Viết phương trình đường thẳng ∆ đi qua điểm M(2; 2) và cắt d1, d2 lần lượt tại B, C thoả
mãn AB = BC.

Nguyễn Việt Lâm
15 tháng 4 2020 lúc 0:38

Tọa độ A là nghiệm: \(\left\{{}\begin{matrix}x+y-1=0\\3x-y+5=0\end{matrix}\right.\) \(\Rightarrow A\left(-1;2\right)\)

Gọi \(\alpha\) là góc giữa d1 và d2 \(\Rightarrow cos\alpha=\frac{\left|3-1\right|}{\sqrt{2}.\sqrt{10}}=\frac{\sqrt{5}}{5}\)

Do \(AB=BC\Rightarrow\Delta ABC\) cân tại B

Gọi \(\beta\) là góc giữa \(\Delta\)\(d_1\) \(\Rightarrow\alpha=\beta\)

Giả sử \(\Delta\) nhận \(\left(a;b\right)\) là vtpt

\(\Rightarrow\frac{\left|a+b\right|}{\sqrt{2}\sqrt{a^2+b^2}}=\frac{\sqrt{5}}{5}\)

\(\Leftrightarrow5\left(a+b\right)^2=2\left(a^2+b^2\right)\)

\(\Leftrightarrow3a^2+10ab+3b^2=0\Rightarrow\left[{}\begin{matrix}3a=-b\\a=-3b\end{matrix}\right.\)

\(\Rightarrow\Delta\) có 2 vtpt là \(\left(1;-3\right);\left(3;-1\right)\)

Có 2 pt đường thẳng thỏa mãn:

\(\left[{}\begin{matrix}1\left(x-2\right)-3\left(y-2\right)=0\\3\left(x-2\right)-1\left(y-2\right)=0\end{matrix}\right.\)


Các câu hỏi tương tự
Nguyễn Minh Ken
Xem chi tiết
Hạ Băng Băng
Xem chi tiết
Như Quỳnh
Xem chi tiết
Hạ Băng Băng
Xem chi tiết
Phạm Minh Khôi
Xem chi tiết
Trần Tuấn Anh
Xem chi tiết
Trần Anh Duy
Xem chi tiết
Trần Thị Vân Anh
Xem chi tiết
Duc Maithien
Xem chi tiết