a, (x+y+z)2
=\(x^2+y^2+z^2+2xy+2xz+2yz\)
b, (x+y−z)2
=\(x^2+y^2+z^2+2xy-2xz-2yz\)
c, (x−y−z)2
=\(x^2+y^2+z^2-2xy-2xz+2yz\)
chúc bạn học tốt ạ
a) Ta có: \(\left(x+y+z\right)^2=\left[\left(x+y\right)+z\right]^2\)
\(=\left(x+y\right)^2+2\left(x+y\right)z+z^2\)
\(=x^2+2xy+y^2+2xz+2yz+z^2\)
\(=x^2+y^2+z^2+2\left(xy+yz+zx\right)\)
b) Ta có: \(\left(x+y-z\right)^2=\left[\left(x+y\right)-z\right]^2\)
\(=\left(x+y\right)^2-2\left(x+y\right)z+z^2\)
\(=x^2+2xy+y^2-2xz-2yz+z^2\)
\(=x^2+y^2+z^2+2\left(xy-yz-zx\right)\)
c) Ta có: \(\left(x-y-z\right)^2=\left[\left(x-y\right)-z\right]^2\)
\(=\left(x-y\right)^2-2\left(x-y\right)z+z^2\)
\(=x^2-2xy+y^2-2xz-2yz+z^2\)
\(=x^2+y^2+z^2-2\left(xy+yz+zx\right)\)
a. \(\left(x+y+z\right)^2=[(x+y)+z]^2\)
rùi bn dựa theo hđt phân tích ra kết quả là \(x^2+y^2+z^2+2xy+2yz+2zx\)