ĐKXĐ : \(x;y\ne0;x^2\ge1;y^2\ge1;xy\ge-2\)
P/t (1) : \(\dfrac{1}{x^2}+\dfrac{1}{y^2}=1\Leftrightarrow x^2+y^2=x^2y^2\)
P/t (2) \(\Leftrightarrow x^2+y^2-2+2\sqrt{x^2y^2-\left(x^2+y^2\right)+1}=xy+2\)
\(\Leftrightarrow x^2y^2-xy-4+2=0\) \(\Leftrightarrow x^2y^2-xy-2=0\Leftrightarrow\left(xy-2\right)\left(xy+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}xy=2\\xy=-1\end{matrix}\right.\)
xy = 2 ; hiển nhiên x ; y khác 0 nên : \(x^2+\left(\dfrac{2}{x}\right)^2=4\) => ...
xy = -1 ; làm tương tự