Cho tam giác ABC; D,E,F là các điểm thỏa mãn \(\overrightarrow{DB}=-\frac{2}{3}\overrightarrow{DC};\overrightarrow{EC}=\frac{5}{2}\overrightarrow{EA};\overrightarrow{FA}=\frac{3}{5}\overrightarrow{FB};AD\cap\text{EF}=G.\) CMR: AD//BE//CF.
Cho tam giác ABC có G là trọng tâm; I là trung điểm của BC; M,N là các điểm thỏa mãn:
\(3\overrightarrow{MA}+\overrightarrow{MB}=\overrightarrow{0};2\overrightarrow{NB}+3\overrightarrow{NC}=\overrightarrow{0}.\)CMR: G,N,M thẳng hàng và \(\overrightarrow{IG}=-\frac{1}{6}\left(\overrightarrow{AB}+\overrightarrow{AC}\right)\)
1. Cho tam giác ABC có M,N,P là trung điểm BC, CA,AB. CMR:
\(\overrightarrow{AM}+\overrightarrow{BN}+\overrightarrow{CP}=\overrightarrow{0}\)
2. Cho tam giác ABC có I, J thỏa mãn: \(\overrightarrow{IA}=2\overrightarrow{IB},3\overrightarrow{JA}+2\overrightarrow{JC}=\overrightarrow{0}\), G là trọng tâm tam giác ABC.
a, Biểu thị vecto AI,AJ, AG theo vecto AB,AC
b CMR I,J,G thẳng hàng
Cho tam giác ABC có trọng tâm G, trục tâm H và tâm đường tròn ngoại tiếp O. CMR
a) \(\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}=\overrightarrow{OH}\).
b) \(\overrightarrow{HA}+\overrightarrow{HB}+\overrightarrow{HC}=2\overrightarrow{HO}\).
c) O, G, H thẳng hàng.
cho tam giacs ABC. Trên các đường thẳng AB, BC, CA ta lấy các điểm tương ứng C', A', B' sao cho \(\overrightarrow{AC'}\)= k\(\overrightarrow{B'A}\), \(\overrightarrow{BA'}\) = k\(\overrightarrow{A'C}\), \(\overrightarrow{CB'}\) = k\(\overrightarrow{B'A}\)
Cmr: G là trọng tâm tam giác ABC thì \(\overrightarrow{GA'}+\overrightarrow{GB'}+\overrightarrow{GC'}=\overrightarrow{0}\)
Cho \(\Delta ABC\) vuông tại A, AB = AC = a
a) Tính \(\left|\overrightarrow{AB}-2\overrightarrow{AC}\right|\)
b) D là trung điểm BC, K đối xừng A qua B. I là trung điểm KD. Biểu thị \(\overrightarrow{AI}\) theo \(\overrightarrow{AB}\), \(\overrightarrow{AC}\)
c) Các điểm E, I thỏa mãn: \(\overrightarrow{AE}=\frac{1}{3}\overrightarrow{AC}\) ; \(\overrightarrow{BJ}=\frac{3}{8}\overrightarrow{BE}\).
Chứng minh A, I, J thẳng hàng.
Cho tam giác ABC.Từ điểm A,B,C dựng các vecto bằng nhau tùy ý \(\overrightarrow{AA'}=\overrightarrow{BB'}=\overrightarrow{CC'}\).Chứng minh:
a)\(\overrightarrow{BB'}+\overrightarrow{CC'}+\overrightarrow{BA}+\overrightarrow{CA}=\overrightarrow{BA'}+\overrightarrow{CA'}\)
b)\(\overrightarrow{AA'}+\overrightarrow{BB'}+\overrightarrow{CC'}=\overrightarrow{BA'}+\overrightarrow{CB'}+\overrightarrow{AC'}\)
Cho hbh ABCD. \(M\in AB;N\in CD:\overrightarrow{AM}=\frac{1}{3}\overrightarrow{AB};\overrightarrow{DN}=\frac{1}{2}\overrightarrow{DC}\). Gọi I, J là các điểm thỏa mãn : \(\overrightarrow{BI}=m\overrightarrow{BC};\overrightarrow{AJ}=n\overrightarrow{AI}\). Khi J à trọng tâm tam giác BMN thì m.n = ?
Cho tam giác ABC. Tìm tập hợp các điểm M thõa mãn:
a) \(\left|\overrightarrow{MC}+\overrightarrow{AB}\right|=\left|\overrightarrow{MA}\right|\).
b) \(\left|\overrightarrow{MA}-\overrightarrow{CA}\right|=\left|\overrightarrow{MA+}\overrightarrow{AB}+\overrightarrow{AC}\right|\).
c) \(\left|\overrightarrow{MB}+\overrightarrow{CA}\right|=\left|\overrightarrow{MC}-\overrightarrow{MB}\right|\).