cho tam giác ABC , trên cạnh AB , AC lấy hai điểm D và E sao cho \(\overrightarrow{AD}=2\overrightarrow{DB},\overrightarrow{CE}=3\overrightarrow{EA}\) . GỌi M là trung điểm DE và I là trung điểm của BC . Đẳng thức vecto nào sau đây đúng :
A . \(\overrightarrow{MI}=\dfrac{1}{6}\overrightarrow{AB}+\dfrac{3}{8}\overrightarrow{AC}\) B. \(\overrightarrow{MI}=\dfrac{-1}{6}\overrightarrow{AB}+\dfrac{3}{8}\overrightarrow{AC}\)
C. \(\overrightarrow{MI}=\dfrac{1}{6}\overrightarrow{AB}-\dfrac{3}{8}\overrightarrow{AC}\) D. \(\overrightarrow{MI}=\dfrac{-1}{6}\overrightarrow{AB}-\dfrac{3}{8}\overrightarrow{AC}\)
Cho tam giác ABC có G là trọng tâm; I là trung điểm của BC; M,N là các điểm thỏa mãn:
\(3\overrightarrow{MA}+\overrightarrow{MB}=\overrightarrow{0};2\overrightarrow{NB}+3\overrightarrow{NC}=\overrightarrow{0}.\)CMR: G,N,M thẳng hàng và \(\overrightarrow{IG}=-\frac{1}{6}\left(\overrightarrow{AB}+\overrightarrow{AC}\right)\)
cho tam giac ABC . D,E là các điểm thỏa mãn \(\overrightarrow{BD}=\dfrac{1}{2}\overrightarrow{BC},\overrightarrow{AE}=\dfrac{1}{4}\overrightarrow{AC},K\)trên AD thỏa \(\overrightarrow{AK}=\dfrac{a}{b}\overrightarrow{AD}\) (\(\dfrac{a}{b}\) tối giản) sao cho 3 điểm B,K,E thẳng hàng. tính a2+b2
Cho hbh ABCD. \(M\in AB;N\in CD:\overrightarrow{AM}=\frac{1}{3}\overrightarrow{AB};\overrightarrow{DN}=\frac{1}{2}\overrightarrow{DC}\). Gọi I, J là các điểm thỏa mãn : \(\overrightarrow{BI}=m\overrightarrow{BC};\overrightarrow{AJ}=n\overrightarrow{AI}\). Khi J à trọng tâm tam giác BMN thì m.n = ?
Cho hình bình hành tâm O và E là trung điểm của AD.Chứng minh:
a)\(\overrightarrow{EA}+\overrightarrow{EB}+2\overrightarrow{EC}=3\overrightarrow{AB}\)
b)\(\overrightarrow{EB}+2\overrightarrow{EA}+4\overrightarrow{ED}=\overrightarrow{EC}\)
Trong mặt phẳng với hệ tọa độ Oxy , cho tam giác ABC với A ( 10 ; 5 ) , B ( 3 ; 2) , C ( 6 ; -5 )
a) Tìm tọa độ D biết \(2\overrightarrow{DA}+3\overrightarrow{DB}-\overrightarrow{DC}=\overrightarrow{0}\)
b) Với F ( -5 ; 8 ) , phân tích \(\overrightarrow{AF}\) theo \(\overrightarrow{AB}\) và \(\overrightarrow{AC}\)
c) Chứng minh rằng tam giác ABC vuông tại B .
d) Tìm tọa độ điểm E trên trục Ox sao cho tam giác EBC cân tại E .
e) Tìm tọa độ điểm M thuộc trục Oy sao cho \(\left|\overrightarrow{MA}+3\overrightarrow{MB}\right|\) đạt giá trị nhỏ nhất .
HELP ME !!!!!! MÌNH ĐANG CẦN GẤP LẮM !!!!!!!!
Cho tam giác ABC.Các điểm D,E,G được xác định bởi hệ thức :\(2\overrightarrow{AD}=\overrightarrow{AB},\overrightarrow{AE}=2\overrightarrow{CE},2\overrightarrow{GD}=\overrightarrow{GC}\)
a, Chứng minh BE//CD.
b/Gọi M là trung điểm của BC.Chúng minh A,G,M thẳng hàng.
Cho \(\Delta ABC\) vuông tại A, AB = AC = a
a) Tính \(\left|\overrightarrow{AB}-2\overrightarrow{AC}\right|\)
b) D là trung điểm BC, K đối xừng A qua B. I là trung điểm KD. Biểu thị \(\overrightarrow{AI}\) theo \(\overrightarrow{AB}\), \(\overrightarrow{AC}\)
c) Các điểm E, I thỏa mãn: \(\overrightarrow{AE}=\frac{1}{3}\overrightarrow{AC}\) ; \(\overrightarrow{BJ}=\frac{3}{8}\overrightarrow{BE}\).
Chứng minh A, I, J thẳng hàng.
1.Cho tam giác ABC và trọng tâm G .Đặt \(\overrightarrow{CA}=\overrightarrow{a},\overrightarrow{CB}=\overrightarrow{b}\) .Biểu thị vecto \(\overrightarrow{AG}\) theo hai vecto \(\overrightarrow{a}\)và \(\overrightarrow{b}\) như sau:
A .\(\overrightarrow{AG}=\frac{2\overrightarrow{a}-\overrightarrow{b}}{3}\) B. \(\overrightarrow{AG}=\frac{2\overrightarrow{a}+\overrightarrow{b}}{3}\) C.\(\overrightarrow{AG}=\frac{\overrightarrow{a}-2\overrightarrow{b}}{3}\) D. \(\overrightarrow{AG}=\frac{-2\overrightarrow{a}+\overrightarrow{b}}{3}\)
2. Cho tam giác ABC và trọng tâm G .Đặt \(\overrightarrow{CA}=\overrightarrow{a},\overrightarrow{CB}=\overrightarrow{b}\) biểu thị vecto \(\overrightarrow{CG}\) theo hai vecto \(\overrightarrow{a}\) và \(\overrightarrow{b}\) như sau :
A .\(\overrightarrow{CG}=\frac{\overrightarrow{a}+\overrightarrow{b}}{3}\) B. \(\overrightarrow{CG}=\frac{\overrightarrow{2a}+\overrightarrow{2b}}{3}\) C. \(\overrightarrow{CG}=\frac{\overrightarrow{a}-\overrightarrow{b}}{3}\) D.\(\overrightarrow{CG}=\frac{\overrightarrow{2a}-\overrightarrow{2b}}{3}\)
3. Cho hình bình hành ABCD và tâm O . Tìm m và n sao cho \(\overrightarrow{BC}=m\overrightarrow{OA}+n\overrightarrow{OB}\)
A. m=n=1 B.m=n=-1 C. m=1,n=-1 D.m=-1,n=1
4. Cho tam giác ABC. Gọi M là điểm sao cho \(\overrightarrow{BM}=2\overrightarrow{MC}\) . Các số m, n thỏa mãn AM = mAB + nAC . Giá trị của m + n là
A. 0 . B. 1 . C. 2 D. 3
5. Cho hình bình hành ABCD tâm O. Gọi I là trung điểm của BC. Tìm m, n thỏa mãn AI = mAD + nAB .
A. m = \(\frac{1}{2}\) , n = 1 . B. m = 1, n = \(\frac{1}{2}\) . C. m = n = 1 D. m = -1, n = \(\frac{1}{2}\)
116. Cho tam giác ABC. Điểm I thuộc đoạn AC sao cho AC = 4IC . Tìm m, n thỏa mãn BI = mAC + nAB
A. m = 1 , n = \(\frac{1}{2}\) . B. m = \(\frac{3}{4}\) , n = 1 . C. m = \(\frac{1}{2}\) , n = -1 D. m = \(\frac{3}{4}\) , n = -1
7.Cho hình chữ nhật ABCD có tâm O, điểm M là điểm bất kỳ. Tìm số thực m thỏa mãn điều kiện MA + MB + MC + MD = mMO
A. 2 . B. 4 . C. 6 D. 8
8.. Cho tam giác ABC và các điểm D, E thỏa \(\overrightarrow{AD}=2\overrightarrow{AB}\) và\(\overrightarrow{AE}=\frac{2}{5}\overrightarrow{AC}\) . Nếu \(\overrightarrow{DE}=m\overrightarrow{AB}+n\overrightarrow{AC}\) (m,n thuộc R). Tính giá trị P=m.n
A. P=\(-\frac{2}{5}\) B.P=\(-\frac{4}{5}\) C.P= \(\frac{4}{5}\) D. P=\(\frac{2}{5}\)
9.Cho tam giác ABC. Gọi M là điểm trên cạnh AB: MB = 4MC. Khi đó, biễu diễn \(\overrightarrow{AM}\) theo \(\overrightarrow{AB}\) và \(\overrightarrow{AC}\) là :
A.\(\overrightarrow{AM}=4\overrightarrow{AB}+\overrightarrow{AC}\) B=\(\overrightarrow{AM}=\frac{4}{5}\overrightarrow{AB}+0\overrightarrow{AC}\) C.\(\overrightarrow{AM}=\frac{4}{5}\overrightarrow{AB}-\frac{1}{5}\overrightarrow{AC}\)
D. \(\overrightarrow{AM}=\frac{4}{5}\overrightarrow{AB}+\frac{1}{5}\overrightarrow{AC}\)
Câu 120. Cho tam gíac ABC và điểm M thỏa \(\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}=0\). Vị trí điểm M đối với tam giác ABC là:
A. trực tâm của tam giác ABC B. tâm đường tròn ngoại tiếp tam giác ABC .
C.. trọng tâm của tam giác ABC D. tâm đường tròn nội tiếp tam giác ABC .
Câu 121. Cho tam giác ABC và điểm M thỏa \(\overrightarrow{MA}-\overrightarrow{MB}+\overrightarrow{MC}=0\) thì mệnh đề nào sau đây đúng?
A. M là trọng tâm tam giác ABC. B. M là trung điểm của AC.
C. ABMC là hình bình hành. D. ACBM là hình bình hành.
Câu 122. Cho tam giác ABC. Tìm điểm K thỏa mãn \(\overrightarrow{KA}+2\overrightarrow{KB}=\overrightarrow{CB}\)
A. K là trung điểm của AB. B. K là trung điểm của BC.
C. K là trọng tâm tam giác ABC. D. K là trung điểm của AC.
Câu 123. Cho ΔABC có G là trọng tâm. Tìm tập hợp các điểm M thỏa mãn \(\left|\overrightarrow{MB}+\overrightarrow{MC}\right|=BC\)
A. Đường tròn đường kính BC B. Đường tròn có tâm C bán kính BC.
C. Đường tròn có tâm B, bán kính BC. D. Đường tròn có tâm A bán kính BC
124.Cho tam giác ABC và điểm M thỏa mãn 2 \(\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}=\)3\(\left|\overrightarrow{MB}+\overrightarrow{MC}\right|\)
A. một đường thẳng B. một đường tròn C. một đoạn thẳng D. nửa đường thẳng
125.Cho hình chữ nhật ABCD tâm O;AB = 8 (cm), AD = 6 (cm). Tập hợp điểm M thỏa \(\left|\overrightarrow{AO}+\overrightarrow{AD}\right|=MO\) là :
A. Đường tròn tâm O có bán kính 10 cm . B. Đường tròn tâm O có bán kính 5 cm .
C. Đường thẳng BD. D. Đường thẳng AC
Câu 126. Cho tam giác ABC. Tập hợp những điểm M sao cho:\(\left|\overrightarrow{MA}+\overrightarrow{MB}\right|\)=\(\left|\overrightarrow{MB}+\overrightarrow{MC}\right|\) là :
A. M nằm trên đường tròn tâm I, bán kính R = 2AC với I nằm trên cạnh AB sao cho IA = 2IB .
B. M nằm trên đường tròn tâm I, bán kính R = 2AB với I nằm trên cạnh AB sao cho IA = 2IB .
C. M nằm trên đường trung trực của IJ với I, J lần lượt là trung điểm của AB và BC.
D. M nằm trên đường trung trực của BC
Câu 127. Hãy xác định các điểm I thoả mãn đẳng thức sau :\(2\overrightarrow{IB}+3\overrightarrow{IC}=0\)
A. I là trung điểm BC.
B. I thuộc cạnh BC và BI = \(\frac{3IC}{2}\)
C. I nằm trên BC ngoài đoạn BC.
D. I không thuộc BC.
Câu 128. Cho tứ giác ABCD và điểm M tùy ý. Khi đó vectơ \(\overrightarrow{u}=\overrightarrow{MA}-4\overrightarrow{MB}+\overrightarrow{3MC}\)bằng
A.\(\overrightarrow{u}=\overrightarrow{BA}-3\overrightarrow{BC}\)
B .\(\overrightarrow{u}=\overrightarrow{3AC}-\overrightarrow{AB}\)
C.\(\overrightarrow{u}=\overrightarrow{2BI}\) với I là trung điểm của AC.
D.\(\overrightarrow{u}=\overrightarrow{2AI}\) với I là trung điểm BC