Bài 5. ÔN TẬP CHƯƠNG I

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Lê Huy Hoàng

1.Cho tam giác ABC và trọng tâm G .Đặt \(\overrightarrow{CA}=\overrightarrow{a},\overrightarrow{CB}=\overrightarrow{b}\) .Biểu thị vecto \(\overrightarrow{AG}\) theo hai vecto \(\overrightarrow{a}\)\(\overrightarrow{b}\) như sau:

A .\(\overrightarrow{AG}=\frac{2\overrightarrow{a}-\overrightarrow{b}}{3}\) B. \(\overrightarrow{AG}=\frac{2\overrightarrow{a}+\overrightarrow{b}}{3}\) C.\(\overrightarrow{AG}=\frac{\overrightarrow{a}-2\overrightarrow{b}}{3}\) D. \(\overrightarrow{AG}=\frac{-2\overrightarrow{a}+\overrightarrow{b}}{3}\)

2. Cho tam giác ABC và trọng tâm G .Đặt \(\overrightarrow{CA}=\overrightarrow{a},\overrightarrow{CB}=\overrightarrow{b}\) biểu thị vecto \(\overrightarrow{CG}\) theo hai vecto \(\overrightarrow{a}\)\(\overrightarrow{b}\) như sau :

A .\(\overrightarrow{CG}=\frac{\overrightarrow{a}+\overrightarrow{b}}{3}\) B. \(\overrightarrow{CG}=\frac{\overrightarrow{2a}+\overrightarrow{2b}}{3}\) C. \(\overrightarrow{CG}=\frac{\overrightarrow{a}-\overrightarrow{b}}{3}\) D.\(\overrightarrow{CG}=\frac{\overrightarrow{2a}-\overrightarrow{2b}}{3}\)

3. Cho hình bình hành ABCD và tâm O . Tìm m và n sao cho \(\overrightarrow{BC}=m\overrightarrow{OA}+n\overrightarrow{OB}\)

A. m=n=1 B.m=n=-1 C. m=1,n=-1 D.m=-1,n=1

4. Cho tam giác ABC. Gọi M là điểm sao cho \(\overrightarrow{BM}=2\overrightarrow{MC}\) . Các số m, n thỏa mãn AM = mAB + nAC . Giá trị của m + n

A. 0 . B. 1 . C. 2 D. 3

5. Cho hình bình hành ABCD tâm O. Gọi I là trung điểm của BC. Tìm m, n thỏa mãn AI = mAD + nAB .

A. m = \(\frac{1}{2}\) , n = 1 . B. m = 1, n = \(\frac{1}{2}\) . C. m = n = 1 D. m = -1, n = \(\frac{1}{2}\)

116. Cho tam giác ABC. Điểm I thuộc đoạn AC sao cho AC = 4IC . Tìm m, n thỏa mãn BI = mAC + nAB

A. m = 1 , n = \(\frac{1}{2}\) . B. m = \(\frac{3}{4}\) , n = 1 . C. m = \(\frac{1}{2}\) , n = -1 D. m = \(\frac{3}{4}\) , n = -1

7.Cho hình chữ nhật ABCD có tâm O, điểm M là điểm bất kỳ. Tìm số thực m thỏa mãn điều kiện MA + MB + MC + MD = mMO

A. 2 . B. 4 . C. 6 D. 8

8.. Cho tam giác ABC và các điểm D, E thỏa \(\overrightarrow{AD}=2\overrightarrow{AB}\)\(\overrightarrow{AE}=\frac{2}{5}\overrightarrow{AC}\) . Nếu \(\overrightarrow{DE}=m\overrightarrow{AB}+n\overrightarrow{AC}\) (m,n thuộc R). Tính giá trị P=m.n

A. P=\(-\frac{2}{5}\) B.P=\(-\frac{4}{5}\) C.P= \(\frac{4}{5}\) D. P=\(\frac{2}{5}\)

9.Cho tam giác ABC. Gọi M là điểm trên cạnh AB: MB = 4MC. Khi đó, biễu diễn \(\overrightarrow{AM}\) theo \(\overrightarrow{AB}\)\(\overrightarrow{AC}\) là :

A.\(\overrightarrow{AM}=4\overrightarrow{AB}+\overrightarrow{AC}\) B=\(\overrightarrow{AM}=\frac{4}{5}\overrightarrow{AB}+0\overrightarrow{AC}\) C.\(\overrightarrow{AM}=\frac{4}{5}\overrightarrow{AB}-\frac{1}{5}\overrightarrow{AC}\)

D. \(\overrightarrow{AM}=\frac{4}{5}\overrightarrow{AB}+\frac{1}{5}\overrightarrow{AC}\)

Câu 120. Cho tam gíac ABC và điểm M thỏa \(\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}=0\). Vị trí điểm M đối với tam giác ABC là:

A. trực tâm của tam giác ABC B. tâm đường tròn ngoại tiếp tam giác ABC .

C.. trọng tâm của tam giác ABC D. tâm đường tròn nội tiếp tam giác ABC .

Câu 121. Cho tam giác ABC và điểm M thỏa \(\overrightarrow{MA}-\overrightarrow{MB}+\overrightarrow{MC}=0\) thì mệnh đề nào sau đây đúng?

A. M là trọng tâm tam giác ABC. B. M là trung điểm của AC.

C. ABMC là hình bình hành. D. ACBM là hình bình hành.

Câu 122. Cho tam giác ABC. Tìm điểm K thỏa mãn \(\overrightarrow{KA}+2\overrightarrow{KB}=\overrightarrow{CB}\)

A. K là trung điểm của AB. B. K là trung điểm của BC.

C. K là trọng tâm tam giác ABC. D. K là trung điểm của AC.

Câu 123. Cho ΔABC có G là trọng tâm. Tìm tập hợp các điểm M thỏa mãn \(\left|\overrightarrow{MB}+\overrightarrow{MC}\right|=BC\)

A. Đường tròn đường kính BC B. Đường tròn có tâm C bán kính BC.

C. Đường tròn có tâm B, bán kính BC. D. Đường tròn có tâm A bán kính BC

124.Cho tam giác ABC và điểm M thỏa mãn 2 \(\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}=\)3\(\left|\overrightarrow{MB}+\overrightarrow{MC}\right|\)

A. một đường thẳng B. một đường tròn C. một đoạn thẳng D. nửa đường thẳng

125.Cho hình chữ nhật ABCD tâm O;AB = 8 (cm), AD = 6 (cm). Tập hợp điểm M thỏa \(\left|\overrightarrow{AO}+\overrightarrow{AD}\right|=MO\) là :

A. Đường tròn tâm O có bán kính 10 cm . B. Đường tròn tâm O có bán kính 5 cm .

C. Đường thẳng BD. D. Đường thẳng AC

Câu 126. Cho tam giác ABC. Tập hợp những điểm M sao cho:\(\left|\overrightarrow{MA}+\overrightarrow{MB}\right|\)=\(\left|\overrightarrow{MB}+\overrightarrow{MC}\right|\) là :

A. M nằm trên đường tròn tâm I, bán kính R = 2AC với I nằm trên cạnh AB sao cho IA = 2IB .

B. M nằm trên đường tròn tâm I, bán kính R = 2AB với I nằm trên cạnh AB sao cho IA = 2IB .

C. M nằm trên đường trung trực của IJ với I, J lần lượt là trung điểm của AB BC.

D. M nằm trên đường trung trực của BC

Câu 127. Hãy xác định các điểm I thoả mãn đẳng thức sau :\(2\overrightarrow{IB}+3\overrightarrow{IC}=0\)

A. I là trung điểm BC.

B. I thuộc cạnh BC BI = \(\frac{3IC}{2}\)

C. I nằm trên BC ngoài đoạn BC.

D. I không thuộc BC.

Câu 128. Cho tứ giác ABCD và điểm M tùy ý. Khi đó vectơ \(\overrightarrow{u}=\overrightarrow{MA}-4\overrightarrow{MB}+\overrightarrow{3MC}\)bằng

A.\(\overrightarrow{u}=\overrightarrow{BA}-3\overrightarrow{BC}\)

B .\(\overrightarrow{u}=\overrightarrow{3AC}-\overrightarrow{AB}\)

C.\(\overrightarrow{u}=\overrightarrow{2BI}\) với I là trung điểm của AC.

D.\(\overrightarrow{u}=\overrightarrow{2AI}\) với I là trung điểm BC


Các câu hỏi tương tự
vothixuanmai
Xem chi tiết
Trần Bạch Vân
Xem chi tiết
Hương Như Giang Quỳnh
Xem chi tiết
Thanh Nguyễn
Xem chi tiết
vothixuanmai
Xem chi tiết
Mai Thị Thanh Xuân
Xem chi tiết
Chó Doppy
Xem chi tiết
Duc Khuat
Xem chi tiết
Nguyễn Thị Thanh Ngọc
Xem chi tiết