Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Đàm Thảo Anh

cho x,y,z là số thực không âm thỏa mãn 2x+y+3z=6;3x+4y-3z=4. tìm Min P= 2x+3y-4z

Hoàng Bảo
13 tháng 4 2017 lúc 0:10

\(\begin{cases} 2x+y+3z=6 (1) \\ 3x+4y-3z=4 (2) \end{cases} \)

Từ hệ phương điều kiện, ta có:

Lấy (1) + (2) ta được: 5x+5y= 10 \(\Rightarrow\) x+y=2 \(\Leftrightarrow\) y=2-x (3)

từ(1) ta suy ra y=6-3z-2x thế biểu thức vào phương trình (2) , ta được :

-5x-15z=-20 \(\Leftrightarrow\) x+3z=4 \(\Leftrightarrow\) z =\(\dfrac{4}{3} - \dfrac{x}{3}\) (4)

thay (4) và (2) vào P ta được :

P= 2x+3y-4z = 2x +3.(2-x)- 4.(\(\dfrac{4}{3}-\dfrac{x}{3}\)) =2x+6-3x-\(\dfrac{16}{3}+\dfrac{4x}{3} = \dfrac{x}{3}+ \dfrac{2}{3}\)

\(\Rightarrow\)Min P \(\Leftrightarrow\) \(\dfrac{x}{3}\) đạt GTNN mà 3>0 cố định \(\Rightarrow\) Min P\(\Leftrightarrow\) x đạt GTNN

Mà x >= 0, x là số thực nên Min P = \(\dfrac{2}{3}\) ,dấu "=" xảy ra khi và chỉ khi :

x=0

Ta có x + y = 2 \(\Rightarrow\) y=2 ; z = \(\dfrac {4}{3} - \dfrac {x}{3}\) \(\Rightarrow \) z =\(\dfrac{4}{3}\)

Vậy Min P =\(\dfrac{2}{3}\) khi x =0, y =2, z = \(\dfrac{4}{3}\)


Các câu hỏi tương tự
phan thị minh anh
Xem chi tiết
Ác Quỷ Bóng Đêm
Xem chi tiết
Phạm Thanh Trà
Xem chi tiết
Đàm Thảo Anh
Xem chi tiết
Ác Quỷ Bóng Đêm
Xem chi tiết
ʚĭɞ Thị Quyên ʚĭɞ
Xem chi tiết
Hải Anh
Xem chi tiết
Ngọc Vĩ
Xem chi tiết
Nhật Minh
Xem chi tiết