Cho tứ giác ABCD, gọi M,N lần lượt là trung điểm AB, CD. Lấy điểm O,M tùy ý
Cm: \(\overrightarrow{MA}\) + \(\overrightarrow{MB}\) + \(\overrightarrow{MC}\) + \(\overrightarrow{MD}\) = \(\overrightarrow{4MO}\)
Cho tứ giác ABCD. Gọi E,F lần lượt là trung điểm AB, CD và O là trung điểm EF. Xác định điểm M sao cho \(\left|\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}+\overrightarrow{MD}\right|\) đạt giá trị nhỏ nhất
Cho hình chữ nhật ABCD, \(AB=a;AC=2a\)
a, Tìm tập hợp điểm M sao cho \(|\overrightarrow{MA}+\overrightarrow{MB}-\overrightarrow{MC}|=|\overrightarrow{MD}|\)
b, Tìm vị trí điểm M để \(P=|\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{2MC}|\) đạt GTNN
Cho hình bình hành ABCD .Tập hợp tất cả các điểm M thỏa mãn :\(\overrightarrow{MA}+\overrightarrow{MB}-\overrightarrow{MC}=\overrightarrow{MD}\)
Cho tứ giác ABCD có M,N là trung điểm AB,CD
CM: \(\overrightarrow{AD}+\overrightarrow{BD}+\overrightarrow{AC}+\overrightarrow{BC}=4\overrightarrow{MN}\)
cho tam giác ABC có D,E,F lần lượt là trung điểm của BC , CA, AB. Gọi M là trung điểm của AD . Chứng minh
a, \(2\overrightarrow{AM}+\overrightarrow{MB}+\overrightarrow{MC}=\overrightarrow{0}\)
b, \(2\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}=4\overrightarrow{OM}\)( O tùy ý)
c, \(\overrightarrow{AD}+\overrightarrow{BE}+\overrightarrow{CF}=\overrightarrow{0}\)
Cho hình chữ nhật ABCD và số thực k>0.Tập hợp các điểm M thỏa mãn đẳng thức :
\(\left|\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}+\overrightarrow{MD}\right|=k\)
Cho ΔABC. Tìm tập hợp điểm M thoả mãn
\(\left|\overrightarrow{MA}+\overrightarrow{MB}-\overrightarrow{MC}\right|=\left|\overrightarrow{MA}-\overrightarrow{MB}+\overrightarrow{MC}\right|\)
Cho tam giác ABC với I, J lần lượt là trung điểm Của CB, CA đồng thời G là trọng tâm
a) Hãy biểu diễn \(\overrightarrow{IJ}\) theo \(\overrightarrow{BA}\)
b) CMR: với mọi điểm M bất kì ta luôn có \(\overrightarrow{MB}+\overrightarrow{MC}=2\overrightarrow{MI}\)
c) CMR: với mọi điểm M bất kì ta luôn có \(\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}=3\overrightarrow{MG}\)