Cho tứ giác ABCD, gọi M,N lần lượt là trung điểm AB, CD. Lấy điểm O,M tùy ý
Cm: \(\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}+\overrightarrow{MD}=4\overrightarrow{MO}\)
Cho tứ giác ABCD, trên AB, CD lần lượt lấy M, N sao cho \(3\overrightarrow{ÁM}=2\overrightarrow{AB}\) và \(3\overrightarrow{DN}=2\overrightarrow{DC}\) . tính \(\overrightarrow{MN}\) theo \(\overrightarrow{AD}và\overrightarrow{BC}\)
Câu 1: Cho hình vuông ABCD có cạnh bằng 1. Gọi O là giao điểm 2 đường chéo AC, BD. Tìm khẳng định sai:
A. \(\overrightarrow{AB}.\overrightarrow{BC}=0\)
B.\(\overrightarrow{BC}.\overrightarrow{BD}=1\)
C.\(\overrightarrow{OD}.\overrightarrow{OB}=-\frac{1}{2}\)
D. \(\overrightarrow{AB}.\overrightarrow{AC}=\sqrt{2}\)
Câu 2: Cho tam giác ABC có M là trung điểm BC, N là trung điểm của BM. Đẳng thức nào sau đây đúng?
A. \(4\overrightarrow{AN}=3\overrightarrow{AB}+\overrightarrow{AC}
\)
B, \(2\overrightarrow{AN}=3\overrightarrow{AB}+\overrightarrow{AC}\)
C.\(4\overrightarrow{AN}=\overrightarrow{AB}+\overrightarrow{3AC}\)
D.\(4\overrightarrow{AN}=3\overrightarrow{AB}+2\overrightarrow{AC}\)
Cho tứ giác ABCD, gọi M,N lần lượt là trung điểm AB, CD. Lấy điểm O,M tùy ý
Cm: \(\overrightarrow{MA}\) + \(\overrightarrow{MB}\) + \(\overrightarrow{MC}\) + \(\overrightarrow{MD}\) = \(\overrightarrow{4MO}\)
Bài 1: Cho 4 điểm A, B,C,D bất kì. Gọi M,N lần lượt là trung điểm của AC và BD. Chứng minh rằng \(\overrightarrow{AB}\) +\(\overrightarrow{CD}\) = 2\(\overrightarrow{MN}\)
Bài 2: Cho 4 điểm A, B,C,D bất kì và M,N lần lượt là trung điểm của AB và CD. G là trung điểm MN. Chứng minh rằng:
a, \(\overrightarrow{GA}\) +\(\overrightarrow{GB}\) +\(\overrightarrow{GC}\) + \(\overrightarrow{GD}\) = \(\overrightarrow{0}\)
b, Với mọi điểm O ta đều có: \(\overrightarrow{OA}\)+\(\overrightarrow{OB}\)+\(\overrightarrow{OC}\)+\(\overrightarrow{OD}\)= 4\(\overrightarrow{OG}\)
Bài 3: Cho ngũ giác ABCDE. Gọi M,N,P,Q lần lượt là trung điểm của các cạnh AB,BC,CD,DE. Gọi I,J lần lượt là trung điểm của MP và NQ. Chứng minh rằng \(\overrightarrow{IJ}\)= \(\overset{1}{4}\) \(\overrightarrow{AE}\)
Cho \(\Delta ABC\) điểm M thỏa mãn : \(\overrightarrow{MB}=-\overrightarrow{2MC}\)
a, G là trọng tâm tam giác ABC , H đối xứng với B qua G
CM: \(\overrightarrow{AH}=\frac{2}{3}\overrightarrow{AC}-\frac{1}{3}\overrightarrow{AB}\)
\(\overrightarrow{CH}=\frac{-1}{3}\left(\overrightarrow{AB}+\overrightarrow{AC}\right)\)
b. N là trung điểm của BC . CM \(\overrightarrow{NH}=\frac{1}{6}\overrightarrow{AC}-\frac{5}{6}\overrightarrow{AB}\)
Cho tứ giác ABCD. Gọi E,F lần lượt là trung điểm AB, CD và O là trung điểm EF. Xác định điểm M sao cho \(\left|\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}+\overrightarrow{MD}\right|\) đạt giá trị nhỏ nhất
cho tam giác ABC có D,E,F lần lượt là trung điểm của BC , CA, AB. Gọi M là trung điểm của AD . Chứng minh
a, \(2\overrightarrow{AM}+\overrightarrow{MB}+\overrightarrow{MC}=\overrightarrow{0}\)
b, \(2\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}=4\overrightarrow{OM}\)( O tùy ý)
c, \(\overrightarrow{AD}+\overrightarrow{BE}+\overrightarrow{CF}=\overrightarrow{0}\)
Cho hbh ABC tâm O. M, N là trung điểm AB, CD. Lấy P sao cho \(\overrightarrow{OP}=-\frac{1}{3}\overrightarrow{OA}\)
a) \(3\overrightarrow{AP}-2\overrightarrow{AC}=\overrightarrow{0}\)
b) B, P ,N thẳng hàng