Gọi độ dài AB = AC = BC = a
\(\overrightarrow{OA}+4\overrightarrow{OB}+2\overrightarrow{OC}=\overrightarrow{0}\)
⇒ \(7\overrightarrow{OA}+4\overrightarrow{AB}+2\overrightarrow{AC}=\overrightarrow{0}\)
⇒ \(7\overrightarrow{OA}=4\overrightarrow{BA}+2\overrightarrow{CA}\)
\(\overrightarrow{OA}+4\overrightarrow{OB}+2\overrightarrow{OC}=\overrightarrow{0}\)
⇒ \(7\overrightarrow{OC}+4\overrightarrow{CB}+\overrightarrow{CA}=\overrightarrow{0}\)
⇒ \(7\overrightarrow{OC}=4\overrightarrow{BC}+\overrightarrow{AC}\)
Vậy \(\overrightarrow{OC}.\overrightarrow{OA}=\left(4\overrightarrow{BC}+\overrightarrow{AC}\right)\left(2\overrightarrow{BA}+\overrightarrow{2CA}\right)\)
⇒ \(\overrightarrow{OA}.\overrightarrow{OC}=\) 0 (bạn khai triển ra là được)
Vậy \(\widehat{AOC}=90^0\)