Câu 1:Cho tam giác ABC có M là trung điểm BC,I là trung điểm AM.Phân tích vector AI theo vector AB và AC
Câu 2:Cho tam giác ABC và điểm m thỏa mãn \(2\overrightarrow{MA}+\overrightarrow{MB}=\overrightarrow{CA}\).Chọn khẳng định đúng:
A.M trùng A
B.M trùng B
C.M trùng C
D.M là trọng tâm tam giác ABC
Câu 3:Gọi G là trọng tâm tam giác ABC.Đặt \(\overrightarrow{GA}=\overrightarrow{a},\overrightarrow{GB}=\overrightarrow{b}\).Hãy tìm m,n để có \(\overrightarrow{BC}=\overrightarrow{ma}+\overrightarrow{mb}\)
Câu 4:Cho 3 điểm A,B,C không thẳng hàng và điểm M thỏa mãn đẳng thức vector \(\overrightarrow{MA}=x\overrightarrow{MB}+y\overrightarrow{MC}\).Tính giá trị biểu thức P=x+y
Cho tam giác ABC , G là trọng tâm của tam giác ABC , I là điểm sao cho \(\overrightarrow{AI}=\dfrac{2}{7}\overrightarrow{AB}\)
1, Tìm giao điểm của IG với BC
2, Tìm quỹ tích điểm M thỏa mãn : \(\left|\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}\right|=\left|\overrightarrow{MA}-\overrightarrow{MB}\right|\)
Cho tam giác ABC có G là trọng tâm; I là trung điểm của BC; M,N là các điểm thỏa mãn:
\(3\overrightarrow{MA}+\overrightarrow{MB}=\overrightarrow{0};2\overrightarrow{NB}+3\overrightarrow{NC}=\overrightarrow{0}.\)CMR: G,N,M thẳng hàng và \(\overrightarrow{IG}=-\frac{1}{6}\left(\overrightarrow{AB}+\overrightarrow{AC}\right)\)
Cho tam giác ABC và điểm M thỏa mãn
\(\left|\overrightarrow{MA}+2\overrightarrow{MB}+3\overrightarrow{MC}\right|=\left|\overrightarrow{MA}+2\overrightarrow{MB}-3\overrightarrow{MC}\right|\)
Tìm Tập hợp điểm M?
Cho tam giác ABC. Gọi M, N là các điểm thỏa mãn \(2\overrightarrow{MA}-\overrightarrow{MB}=\overrightarrow{0}\), \(\overrightarrow{NB}+2\overrightarrow{NC}=\overrightarrow{0}\)
a. Chứng minh \(\overrightarrow{AB}+\overrightarrow{MN}=\overrightarrow{MB}+\overrightarrow{CN}-\overrightarrow{CA}\)
b. Biểu diễn các vec tơ \(\overrightarrow{AM},\overrightarrow{AN,}\overrightarrow{MN}\) theo hai vec tơ \(\overrightarrow{AB,}\overrightarrow{AC}\)
c. Chứng minh đường thẳng MN đi qua trung điểm P của AC
1. Cho tam giác ABC có M,N,P là trung điểm BC, CA,AB. CMR:
\(\overrightarrow{AM}+\overrightarrow{BN}+\overrightarrow{CP}=\overrightarrow{0}\)
2. Cho tam giác ABC có I, J thỏa mãn: \(\overrightarrow{IA}=2\overrightarrow{IB},3\overrightarrow{JA}+2\overrightarrow{JC}=\overrightarrow{0}\), G là trọng tâm tam giác ABC.
a, Biểu thị vecto AI,AJ, AG theo vecto AB,AC
b CMR I,J,G thẳng hàng
Cho tam giác ABC. Tìm tâp hợp điểm M sao cho: \(\left|\overrightarrow{MA}+3\overrightarrow{MB}-2\overrightarrow{MC}\right|\)=\(\left|2\overrightarrow{MA}-\overrightarrow{MB}-\overrightarrow{MC}\right|\)
Cho tam giác ABC. Tìm tập hợp các điểm M thõa mãn:
a) \(\left|\overrightarrow{MC}+\overrightarrow{AB}\right|=\left|\overrightarrow{MA}\right|\).
b) \(\left|\overrightarrow{MA}-\overrightarrow{CA}\right|=\left|\overrightarrow{MA+}\overrightarrow{AB}+\overrightarrow{AC}\right|\).
c) \(\left|\overrightarrow{MB}+\overrightarrow{CA}\right|=\left|\overrightarrow{MC}-\overrightarrow{MB}\right|\).
Cho tam giác ABC biết A(2;5), B(-1;8),C(4;-3). Tìm tọa độ điểm M ∈ Ox sao cho:
a)\(\left|\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}\right|\) đạt GTNN.
b) /\(\left|2\overrightarrow{MA}-\overrightarrow{MB}+3\overrightarrow{MC}\right|\) đạt giá trị nhỏ nhất.