Cho tam giác ABC. Tìm M thỏa:
\(a.\overrightarrow{MA}+2\overrightarrow{MB}=\overrightarrow{0}\)
\(b.\overrightarrow{MA}+2\overrightarrow{MB}+\overrightarrow{MC}=\overrightarrow{0}\)
\(c.\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}=\overrightarrow{0}\)
\(d.\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{2MC}=\overrightarrow{0}\)
\(e.\overrightarrow{3MA}+5\overrightarrow{MB}+\overrightarrow{7MC}=\overrightarrow{0}\)
\(f.\overrightarrow{MA}+2\overrightarrow{MB}+3\overrightarrow{MC}=\overrightarrow{0}\)
a: vecto MA+2vectoMB=vecto 0
=>vecto MA=-2vecto MB
=>M nằm giữa A và B và MA=2MB
c: vecto MA+vecto MB+vecto MC=vecto 0
nên M là trọng tâm của ΔABC