Gọi G là trọng tâm tam giác ABC
\(\vec{MA}.\vec{MB}+\vec{MB}.\vec{MC}+\vec{MC}.\vec{MA}\)
\(=\dfrac{1}{2}\left(\vec{MA}+\vec{MB}+\vec{MC}\right)^2-\dfrac{1}{2}\left(MA^2+MB^2+MC^2\right)\)
\(\ge-\dfrac{1}{2}\left(MA^2+MB^2+MC^2\right)\)
\(=-\dfrac{1}{2}\left[\left(\vec{MG}+\vec{GA}\right)^2+\left(\vec{MG}+\vec{GB}\right)^2+\left(\vec{MG}+\vec{GC}\right)^2\right]\)
\(=-\dfrac{1}{2}\left[3MG^2+2\vec{MG}\left(\vec{GA}+\vec{GB}+\vec{GC}\right)+GA^2+GB^2+GC^2\right]\)
\(\ge-\dfrac{1}{2}\left(GA^2+GB^2+GC^2\right)\)
\(min=-\dfrac{1}{2}\left(GA^2+GB^2+GC^2\right)\Leftrightarrow M\equiv G\)