Cho tam giác ABC biết A(2;5), B(-1;8),C(4;-3). Tìm tọa độ điểm M ∈ Ox sao cho:
a)\(\left|\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}\right|\) đạt GTNN.
b) /\(\left|2\overrightarrow{MA}-\overrightarrow{MB}+3\overrightarrow{MC}\right|\) đạt giá trị nhỏ nhất.
Cho tam giác ABC. Tìm tập hợp các điểm M thõa mãn:
a) \(\left|\overrightarrow{MC}+\overrightarrow{AB}\right|=\left|\overrightarrow{MA}\right|\).
b) \(\left|\overrightarrow{MA}-\overrightarrow{CA}\right|=\left|\overrightarrow{MA+}\overrightarrow{AB}+\overrightarrow{AC}\right|\).
c) \(\left|\overrightarrow{MB}+\overrightarrow{CA}\right|=\left|\overrightarrow{MC}-\overrightarrow{MB}\right|\).
Cho tam giác ABC , G là trọng tâm của tam giác ABC , I là điểm sao cho \(\overrightarrow{AI}=\dfrac{2}{7}\overrightarrow{AB}\)
1, Tìm giao điểm của IG với BC
2, Tìm quỹ tích điểm M thỏa mãn : \(\left|\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}\right|=\left|\overrightarrow{MA}-\overrightarrow{MB}\right|\)
Cho tam giác ABC. Tìm tâp hợp điểm M sao cho: \(\left|\overrightarrow{MA}+3\overrightarrow{MB}-2\overrightarrow{MC}\right|\)=\(\left|2\overrightarrow{MA}-\overrightarrow{MB}-\overrightarrow{MC}\right|\)
Cho tam giác ABC và điểm M thỏa mãn
\(\left|\overrightarrow{MA}+2\overrightarrow{MB}+3\overrightarrow{MC}\right|=\left|\overrightarrow{MA}+2\overrightarrow{MB}-3\overrightarrow{MC}\right|\)
Tìm Tập hợp điểm M?
1) cho hình thang ABCD có AB // CD và AB=\(\dfrac{1}{3}\)CD . điểm M nằm trên AC sao cho \(\overrightarrow{AM}=x\overrightarrow{MC}\) . Tìm \(x\) sao cho B,M,D thẳng hàng.
2) cho tam giác ABC. A(1;1), B(4;3), C(2;-2) .tìm tọa độ điểm M thuộc trục o\(x\) sao cho :\(|\overrightarrow{MA}-2\overrightarrow{MB}+3\overrightarrow{MC|}\) nhỏ nhất.
3) cho A(3;4) , B(-1;1). tìm m thuộc o\(x\) sao cho AM+BM nhỏ nhất.
cho tam giác ABC tìm tập hợp M
a. l\(\overrightarrow{MA}\)+\(\overrightarrow{MB}\)-\(\overrightarrow{2MC}\)l=l\(\overrightarrow{MB}\)+\(\overrightarrow{MC}\)l
b. l\(\overrightarrow{MA}\)+\(\overrightarrow{MB}\)-\(\overrightarrow{MC}\)l=l\(\overrightarrow{MA}\)-\(\overrightarrow{MB}\)-\(\overrightarrow{MC}\)l
Cho tam giác đều ABC cạnh a,trọng tâm G.Tập hợp các điểm M thỏa mãn \(\left|\overrightarrow{MA}+\overrightarrow{MB}\right|=\left|\overrightarrow{MA}+\overrightarrow{MC}\right|\) là
A.đường trung trực của BC
B.đường tròn đường kính BC
C.đường tròn tâm G,bán kính \(\frac{a}{3}\)
D.đường trung trực của AG
Câu 1:Cho tam giác ABC có M là trung điểm BC,I là trung điểm AM.Phân tích vector AI theo vector AB và AC
Câu 2:Cho tam giác ABC và điểm m thỏa mãn \(2\overrightarrow{MA}+\overrightarrow{MB}=\overrightarrow{CA}\).Chọn khẳng định đúng:
A.M trùng A
B.M trùng B
C.M trùng C
D.M là trọng tâm tam giác ABC
Câu 3:Gọi G là trọng tâm tam giác ABC.Đặt \(\overrightarrow{GA}=\overrightarrow{a},\overrightarrow{GB}=\overrightarrow{b}\).Hãy tìm m,n để có \(\overrightarrow{BC}=\overrightarrow{ma}+\overrightarrow{mb}\)
Câu 4:Cho 3 điểm A,B,C không thẳng hàng và điểm M thỏa mãn đẳng thức vector \(\overrightarrow{MA}=x\overrightarrow{MB}+y\overrightarrow{MC}\).Tính giá trị biểu thức P=x+y