Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Binn

Cho tam giác ABC cân tại A, tia phân giác AM (M thuộc BC) chứng minh:
a) tam giác ABM bằng tam giác ACM
b)M là trung điểm của BC
c)AM vuông góc BC

2611
28 tháng 6 2022 lúc 17:04

`a)` Vì `\triangle ABC` vuông tại `A=>AB=AC`

Vì `AM` là tia p/g của `\hat{BAC}=>\hat{BAM}=\hat{CAM}`

Xét `\triangle ABM` và `\triangle ACM` có:

   `{:(AB=AC),(\hat{BAM}=\hat{CAM}),(AM\text{ là cạnh chung}):}}=>`

 `=>\triangle ABM=\triangle ACM` (c-g-c)

`b)` Vì `\triangle ABM=\triangle ACM=>BM=CM` (`2` cạnh t/ứ)

      `=>M` là trung điểm của `BC`

`c)` Vì `\triangle ABM=\triangle ACM=>\hat{AMB}=\hat{AMC}`

Ta có:`\hat{AMB}+\hat{AMC}=180^o`

  `=>2\hat{AMB}=180^o =>\hat{AMB}=90^o`

    `=>AM \bot BC`

Binn
28 tháng 6 2022 lúc 17:00

help meeeeeeeeeeeeee

 

 


Các câu hỏi tương tự
Nguyễn Đăng Khang
Xem chi tiết
44-Thế toàn-6k2
Xem chi tiết
Minh Vương
Xem chi tiết
Minh Vương
Xem chi tiết
Loan Tran
Xem chi tiết
Danni
Xem chi tiết
Xem chi tiết
Nhi Nek
Xem chi tiết
jinkaka132
Xem chi tiết
Dương Yến Vy
Xem chi tiết