a/ \(\sqrt{x^2+1}=1-x\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\le1\\x^2+1=\left(1-x\right)^2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\le1\\x^2+1=1-2x+x^2\end{matrix}\right.\) \(\Rightarrow x=0\)
b/ \(\Leftrightarrow\left\{{}\begin{matrix}x\le m\\x^2+1=\left(m-x\right)^2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\le m\\2x+1=m^2-2x\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\le m\\x=\frac{m^2-1}{4}\end{matrix}\right.\) \(\Rightarrow\frac{m^2-1}{4}\le m\)
\(\Leftrightarrow m^2-4m-1\le0\)
\(\Rightarrow2-\sqrt{5}\le m\le2+\sqrt{5}\)