a.
\(\left\{{}\begin{matrix}m+1\ne0\\\Delta'=\left(m-1\right)^2-\left(m+1\right)\left(3m-3\right)>0\\x_1+x_2=\frac{2\left(m-1\right)}{m+1}>0\\x_1x_2=\frac{3m-3}{m+1}>0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m\ne-1\\\left(m-1\right)\left(m+2\right)< 0\\\frac{m-1}{m+1}>0\\\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}-2< m< 1\\\left[{}\begin{matrix}m>1\\m< -1\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow-2< m< -1\)
b. Không rõ đề
c. \(\Delta'=\left(m+1\right)^2-\left(m+7\right)< 0\)
\(\Leftrightarrow m^2+m-6< 0\Leftrightarrow-3< m< 2\)
d. \(\left\{{}\begin{matrix}\Delta'=\left(m+1\right)^2-\left(m+7\right)\ge0\\x_1+x_2=-2\left(m+1\right)< 0\\x_1x_2=m+7>0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m^2+m-6\ge0\\m>-1\\m>-7\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}m\le-3\\m\ge2\end{matrix}\right.\\m>-1\\m>-7\end{matrix}\right.\) \(\Rightarrow m\ge2\)