1. Trong Oxy, cho (C): \(x^2+y^2-2x-6y+6=0\), M (-3; 1).
a) Chứng minh M nằm ngoài (C). Gọi A, B là tiếp điểm của các tiếp tuyến từ M đến (C). Tìm tọa độ A, B.
b) Viết phương trình tiếp tuyến d' của (C) biết d' hợp với đường thẳng \(\Delta':2x+y-1=0\) góc 450.
2. Trong Oxy, cho (C1): \(x^2+y^2-2x-4y+1=0\), M (3; 4).
a) Viết phương trình tiếp tuyến d1 với đường tròn (C1) tại giao điểm của \(\Delta_1:x-2y+5=0,\Delta_2:3x+y+1=0\).
b) Viết phương trình đường tròn (C2) có tâm M, cắt đường tròn (C1) tại hai điểm A, B sao cho \(S_{\Delta IAB}\) lớn nhất.
MONG MỌI NGƯỜI GIÚP ĐỠ CHO MÌNH! CẢM ƠN RẤT NHIỀU!
Trong mặt phẳnng tọa độ Oxy cho đường tròn (C) có phương trình \(x^2+y^2-2x+4y+1=0\) và điểm A(1;-3). Tìm toạ độ điểm M thuộc đường tròn (C) sao cho độ dài đoạn MA lớn nhất
Trong mặt phẳng tọa độ Oxy, cho điểm M(1;-2) và đường tròn (C): (x-2)2 + y2 =10. Số tiếp tuyến kẻ từ điểm M tới đường tròn (C) là :
A.2 B.1 C.0 D. vô số
1. Trong Oxy, cho (C): \(x^2+y^2-2x-4y+1=0\), M(3; 4). Viết phương trình đường tròn (\(C_2\)) có tâm M, cắt đường tròn (\(C_1\)) tại hai điểm A, B sao cho \(S_{\Delta IAB}\) lớn nhất.
2. Trong Oxy, cho (C): \(x^2+y^2-2x+4y=0\), d: \(x-y-1=0\). Tìm điểm M thuộc d sao cho qua M kẻ được hai đường thẳng tiếp xúc với đường tròn (C) lần lượt tại A, B và \(\Delta MAB\) là tam giác đều.
3. Trong Oxy, cho (C): \(x^2+y^2-2x-4y-5=0\) và điểm M(0; -1) \(\in\) (C), Tìm tọa độ các điểm B, C thuộc đường tròn (C) saao cho \(\Delta MBC\) đều.
Cho (C):\(\left(x+3\right)^2+\left(y-\frac{5}{4}\right)^2=25\) và đường thẳng \(\Delta\)2x-y+1=0. Từ điểm A thuộc đường thẳng\(\Delta\) kẻ 2 tiếp tuyến với (C). Gọi M,N là các tiếp điểm và độ dài đoạn MN= 6. Xác định tọa độ điểm A
Câu 1:Tìm điểm A trên đường thẳng delta 2x-y+2=0 sao cho từ A kẻ được 2 tiếp tuyến của đường thẳng C x^2+y^2-2x+4y-4=0 và hai tiếp tuyến đó tạo thành góc 60°
Câu 2 cho mặt phẳng xoy tìm phương trình đường thẳng d đi qua điểm M(3:1) và cắt ox, oy theo thứ tự A B sao cho 3OA+4OB nhỏ nhất
Giúp em với ạ
Mn giúp em 3 bài này vs em cảm ơn!
1. Trong mặt phẳng tọa độ Oxy cho điểm A(3,1) và đường thẳng (d): x+y-2=0
a) Viết pt đường tròn (C) tâm A tiếp xúc với đường thẳng (d)
b)Viết pt tiếp tuyến vs đường tròn (C) kẻ từ O(0,0)
c) Tính bán kính đường tròn (C') tâm A, biết (C') cắt (d) tại 2 điểm E,F sao cho diện tích tam giác AEF= 6
2. Trong mặt phẳng tọa độ Oxy cho điểm I(1,-2) và đường thẳng (d) có pt \(\left\{{}\begin{matrix}x=t\\y=2-t\end{matrix}\right.\)
a) Lập pt đường tròn (C) tâm I tiếp xúc vs (d). Tìm tọa độ tiếp điểm
b)Viết pt tiếp tuyến với đường tròn (C), biết tiếp tuyến đó vuông góc với đường thẳng d
3. Trong mp tọa độ Oxy, viết pt đường tròn (C) thỏa mãn:
a) (C) có bán kính AB với A(4,0); B(2,5)
b) (C) đi qua A(1,3); B(-2,5) và có tâm thuộc đường thẳng (d): 2x-y+4=0
c) (C) đi qua A(4,-2) và tiếp xúc với Oy tại B(0,-2)
d) (C) đi qua A(0,-1), B(0,5) và tiếp xúc Ox
1. Viết phương trình đường tròn (C) biết (C) tiếp xúc với d: 3x - 4y - 31 = 0 tại A(1; -7) và có R = 5.
2. Trong Oxy, cho (C): \(x^2+y^2+4x+7y-17=0\). Viết phương trình tiếp tuyến \(\Delta\) của đường tròn (C), biết \(\Delta\) đi qua A(2; 6).
3. Trong Oxy, cho (C): \(x^2+y^2-2x+6y+6=0\), M(-3; 1).
a) Chứng minh M nằm ngoài (C).
b) Gọi A, B là tiếp điểm của các tiếp tuyến từ M đến (C). Tìm tọa độ A, B.
MONG MỌI NGƯỜI GIÚP ĐỠ CHO MÌNH! CẢM ƠN RẤT NHIỀU!
CHỦ ĐỀ PHƯƠNG TRÌNH ĐƯỜNG THẲNG
Bài 1) Viết PTTQ của đường thẳng d
a) Qua M(-1;-4) và song song với đường thẳng 3x+5y-2=0
b) Qua N(1;1) và vuông góc với đường thẳng 2x+3y+7=0
Bài 2) Viết PT đường thẳng đi qua M(2;5) và cách đều hai điểm P(-1;2),Q(5;4)
Bài 3) Cho đường thằng d1: 2x-y-2=0 ; d2: x+y+3=0 và điểm M(3;0). Viết phương trình đường thẳng D đi qua M, cắt d1 và d2 lần lượt tại điểm A và B sao cho M là trung điểm của đoạn thẳng AB.
Bài 4) Cho tam giác ABC biết A(2;1) B(-1;0) C(0;3)
a) Viết PTTQ của đường cao AH
b)Viết PTTQ của đường trung trực của đoạn thẳng AB
c) Viết PTTQ của đường thẳng BC
d) Viết PTTQ của đường thẳng qua A và song song với đường thẳng BC
Bài 5) Trong mặt phẳng với hệ tọa độ Oxy, viết phương trình đường thẳng \(\Delta\) song song với đường thẳng d: 3x-4y+1=0 và cách d một khoảng bằng 1
Bài 6) Trong mặt phẳng với hệ tọa độ Oxy, cho tam giác ABC biết phương trình cạnh BC: x-2y+5=0, phương trình đường trung tuyến BB': y-2=0 và phương trình đường trung tuyến CC': 2x-y-2=0. Tìm tọa độ các đỉnh của tam giác.
Bài 7) Trong mặt phẳng với hệ tọa độ Oxy, cho hai đường thằng d1: x-y-4=0 , d2: 2x=y-2=0 và 2 điểm A(7;5) B(2;3). Tìm điểm C trên đường thẳng d1 và điểm D trên đường thằng d2 sao cho tứ giác ABCD là hình bình hành.
Bài 8) Trong mặt phẳng với hệ tọa độ Oxy, cho hình chữ nhật ABCD có điểm I(6;2) là giao điểm của hai đường chéo AC và BD. Điểm M(1;5) thuộc đường thẳng AB và trung điểm A của cạnh CD thuộc đường thằng d: x+y-5=0. Viết phương trình đường thẳng AB.
CHỦ ĐỀ ĐƯỜNG TRÒN:
Bài 9) Trong mặt phẳng với hệ tọa độ Oxy, cho đường thằng d: 2x-y-5=0 và hai điểm A(1;2) B(4;1). Viết phương trình đường tròn (C) có tâm thuộc d và đi qua hai điểm A,B
Bài 10) Trong mặt phẳng với hệ tọa độ Oxy, cho hai đường thẳng d1: x+3y+8=0, d2: 3x-y+10=0 và điểm A(-2;1). Viết phương trình đường tròn (C) có tâm thuộc d1 đi qua điểm A và tiếp xúc với d2
Bài 11) Trong mặt phẳng với hệ tọa độ Oxy, cho hai điểm A(-1;1) B(3;3) và đường thẳng d: 3x-y+8=0. Viết phương trình đường tròn (C) đi qua hai điểm A,B và tiếp xúc với d
Bài 12) Trong mặt phẳng với hệ tọa độ Oxy, cho hai đường thẳng d: x+2y-3=0 và \(\Delta\): x+3y-5=0. Viết phương trình đường tròn (C) có bán kính bằng \(\frac{2\sqrt{10}}{5}\), có tâm thuộc d và tiếp xúc với \(\Delta\)
Bài 13) Trong mặt phẳng với hệ tọa độ Oxy, cho đường tròn (C): \(\left(x-1\right)^2+\left(y-2\right)^2=8\)
a) Viết phương trình tiếp tuyến của đường tròn (C) tại điểm A(3;-4)
b) Viết phương trình tiếp tuyến của đường tròn (C) đi qua điểm B(5;-2)
c) Viết phương trình tiếp tuyến của đường tròn (C), biết tiếp tuyến vuông góc với đường thẳng d: x+y+2014=0
d) Viết phương trình tiếp tuyến của đường tròn (C), biết tiếp tuyến tạo với trục tung một góc 45 độ
CHỦ ĐỀ ELIP
Bài 14) Xác định các đỉnh, độ dài các trục, tiêu cự, tiêu điểm, tâm sai của elip có phương trình sau:
a) \(\frac{x^2}{2}+\frac{y^2}{2}=1\)
b) \(4x^2+25y^2=100\)
Bài 15) Lập phương trình chính tắc của Elip, biết
a) Elip đi qua điểm M\(\left(2;\frac{5}{3}\right)\) và có một tiêu điểm F1(-2;0)
b) Elip nhận F2(5;0) là một tiêu điểm và có độ dài trục nhỏ bằng \(4\sqrt{6}\)
c) Elip có độ dài trục lớn bằng \(2\sqrt{5}\) và tiêu cự bằng 2.
d) Elip đi qua hai điểm M(2;\(-\sqrt{2}\)) và N\(\left(-\sqrt{6};1\right)\)
Bài 16) Lập phương trình chính tắc của Elip, biết:
a) Elip có tổng độ dài hai trục bằng 8 và tâm sai \(e=\frac{1}{\sqrt{2}}\)
b) Elip có tâm sai \(e=\frac{\sqrt{5}}{3}\) và hình chữ nhật cơ sở có chu vi bằng 20.
c) Elip có tiêu điểm F1(-2;0) và hình chữ nhật cơ sở có diện tích bằng \(12\sqrt{5}\)