1. Viết phương trình đường tròn (C) biết (C) tiếp xúc với d: 3x - 4y - 31 = 0 tại A(1; -7) và có R = 5.
2. Trong Oxy, cho (C): \(x^2+y^2+4x+7y-17=0\). Viết phương trình tiếp tuyến \(\Delta\) của đường tròn (C), biết \(\Delta\) đi qua A(2; 6).
3. Trong Oxy, cho (C): \(x^2+y^2-2x+6y+6=0\), M(-3; 1).
a) Chứng minh M nằm ngoài (C).
b) Gọi A, B là tiếp điểm của các tiếp tuyến từ M đến (C). Tìm tọa độ A, B.
MONG MỌI NGƯỜI GIÚP ĐỠ CHO MÌNH! CẢM ƠN RẤT NHIỀU!
Bài 1:
Gọi d' là đường thẳng qua A và vuông góc d
Phương trình d':
\(4\left(x-1\right)+3\left(y+7\right)=0\Leftrightarrow4x+3y+17=0\)
Tâm của (C) nằm trên d' nên tọa độ có dạng \(I\left(a;\frac{-4a-17}{3}\right)\Rightarrow\overrightarrow{AI}=\left(a-1;\frac{4-4a}{3}\right)\)
\(IA^2=R^2\Leftrightarrow\left(a-1\right)^2+\left(\frac{4-4a}{3}\right)^2=25\)
\(\Rightarrow\left(a-1\right)^2=9\Rightarrow\left[{}\begin{matrix}a=4\\a=-2\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}I\left(4;-11\right)\\I\left(-2;-3\right)\end{matrix}\right.\)
Có 2 đường tròn thỏa mãn:
\(\left[{}\begin{matrix}\left(x-4\right)^2+\left(y+11\right)^2=25\\\left(x+2\right)^2+\left(y+3\right)^2=25\end{matrix}\right.\)
Bài 2:
Đường tròn (C) tâm \(I\left(-2;-\frac{7}{2}\right)\) bán kính \(R=\frac{\sqrt{133}}{2}\)
Sao số xấu dữ vậy ta? Số to như vầy tính toán mệt lắm
Gọi tiếp tuyến d của đường tròn có dạng:
\(a\left(x-2\right)+b\left(y-6\right)=0\Leftrightarrow ax+by-2a-6b=0\)
d tiếp xúc (C) \(\Leftrightarrow d\left(I;d\right)=R\)
\(\Leftrightarrow\frac{\left|-2a-\frac{7}{2}b-2a-6b\right|}{\sqrt{a^2+b^2}}=\frac{\sqrt{133}}{2}\)
\(\Leftrightarrow\left|6a+19b\right|=\sqrt{133\left(a^2+b^2\right)}\)
\(\Leftrightarrow97a^2-228ab-288b^2=0\)
Chắc bạn ghi sai đề thật, nghiệm pt này xấu hủy hoại, chắc chẳng ai cho đề kiểu như vầy hết