`a)` Với `x >= 0,x \ne 1` có:
`A_4=([x+2]/[x\sqrt{x}-1]+\sqrt{x}/[x+\sqrt{x}+1]+1/[1-\sqrt{x}]):[\sqrt{x}-1]/2`
`A_4=[x+2+\sqrt{x}(\sqrt{x}-1)-x-\sqrt{x}-1]/[(\sqrt{x}-1)(x+\sqrt{x}+1)]. 2/[\sqrt{x}-1]`
`A_4=[x+2+x-\sqrt{x}-x-\sqrt{x}-1]/[(\sqrt{x}-1)(x+\sqrt{x}+1)]. 2/[\sqrt{x}-1]`
`A_4=[x-2\sqrt{x}+1]/[(\sqrt{x}-1)(x+\sqrt{x}+1)]. 2/[\sqrt{x}-1]`
`A_4=[2(\sqrt{x}-1)^2]/[(\sqrt{x}-1)^2(x+\sqrt{x}+1)]`
`A_4=2/[x+\sqrt{x}+1]`
____________________________________
`b)` Với `x >= 0,x \ne 1` có: `A_4=2/[x+\sqrt{x}+1]`
Có: `x+\sqrt{x}+1=x+2\sqrt{x}. 1/2+1/4+3/4=(\sqrt{x}+1/2)^2+3/4`
Vì `x >= 0<=>(\sqrt{x}+1/2)^2 >= 0`
`=>(\sqrt{x}+1/2)^2+3/4 > 0`
Hay `x+\sqrt{x}+1 > 0`
Mà `2 > 0`
`=>2/[x+\sqrt{x}+1] > 0`
Hay `A_4 > 0 AA x >= 0,x \ne 1`
`=>Đpcm`
a: \(A=\dfrac{x+2+x-\sqrt{x}-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\cdot\dfrac{2}{\sqrt{x}-1}\)
\(=\dfrac{x-2\sqrt{x}+1}{\left(\sqrt{x}-1\right)^2}\cdot\dfrac{2}{x+\sqrt{x}+1}=\dfrac{2}{x+\sqrt{x}+1}\)
b: \(x+\sqrt{x}+1>=1>0\)
nên A>0 với x>=0; x<>1